Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 241-246 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sayadi M, Shekari H. Efficiency of Spirogyra at Bioadsorption of Heavy Metals such as Chromium, Copper, and Zinc from Aquatic Environments. JMBS 2018; 9 (2) :241-246
URL: http://biot.modares.ac.ir/article-22-14325-en.html
1- Environment Department, Natural Resources & Environment Faculty, University of Birjand, Birjand, Iran, Natural Resources & Environment Faculty, University of Birjand, Amirabad Pardis, 5 Kilometers Kerman Road, Birjand, South Khorasan. Postal code: 9719113944 , mh_sayadi@birjand.ac.ir
2- Environment Department, Natural Resources & Environment Faculty, University of Birjand, Birjand, Iran
Abstract:   (5444 Views)
Aims: Heavy metal pollution is a worrisome environmental problem around the world. This study aimed at evaluating the efficiency of spirogyra to remove heavy metals such as chromium (Cr), copper (Cu), and zinc (Zn) from the aquatic environments.
Materials and Methods: The present experimental research was carried out on spirogyra of aqueducts in Birjand. The experimental method was considered one-factor-at-a-time. Effect of pH parameters, adsorbent dosage, contact time, initial concentration of Cr, Cu, and Zn at adsorption of heavy metals by spirogyra and Kinetic models, and Langmuir adsorption isotherms, Freundlich, and Temkin were examined.
Findings: The highest percentage of Cr (84.48%) and Cu (76.85%) removal occurred at pH 3 and 5, respectively with initial concentration of 20mg/l Cr and Cu at 15 and 40 minutes, respectively, in 3g algae biomass. Also, the highest Zn removal efficiency (89.26%) occurred at pH=5, initial concentration of 20mg/l, and adsorbent dosage of 2g/l over a 20 minutes period. Adsorption of Cr, Cu, and Zn were followed by Langmuir model with correlation coefficient 0.9983, 0.9924, and 0.9977, respectively. According to the kinetics results, the adsorption of Cr, Cu, and Zn were followed by pseudo second model with coefficients of 0.9922, 0.9767, and 0.9953, respectively.
Conclusion: Spirogyra has a high ability to remove chromium, copper, and zinc from aquatic environments.
Keywords: Chromium, Copper, Zinc, Kinetics
Full-Text [PDF 507 kb]   (2711 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/02/5 | Accepted: 2017/07/4 | Published: 2018/06/21

References
1. Gupta VK, Rastogi A. Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater. 2008;153(1-2):759-66. [Link] [DOI:10.1016/j.jhazmat.2007.09.021]
2. Fagundes-Klen MR, Veit MT, Borba CE, Bergamasco R, De Lima Vaz, LG, Da Silva EA. Copper biosorption by biomass of marine alga: Study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column. Water Air Soil Pollut. 2010;213(1-4):15-26. [Link] [DOI:10.1007/s11270-010-0363-7]
3. Ajjabi LC, Chouba L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manag. 2009;90(11):3485-9. [Link] [DOI:10.1016/j.jenvman.2009.06.001]
4. Li H, Bi Sh, Liu L, Dong W, Wang X. Separation and accumulation of Cu (II), Zn (II) and Cr (VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine. Desalination. 2011;278(1-3):397-404. [Link] [DOI:10.1016/j.desal.2011.05.056]
5. Pan R, Cao L, Zhang R. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J Hazard Mater. 2009;171(1-3):761-6. [Link] [DOI:10.1016/j.jhazmat.2009.06.080]
6. Şahan T, Ceylan H, Şahiner N, Aktaş N. Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresour Technol. 2010;101(12):4520-6. [Link] [DOI:10.1016/j.biortech.2010.01.105]
7. Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98(12):2243-57. [Link] [DOI:10.1016/j.biortech.2005.12.006]
8. Xuejiang W, Ling C, Siqing X, Jianfu Z, Chovelon JM, Renault NJ. Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Miner Eng. 2006;19(9):968-71. [Link] [DOI:10.1016/j.mineng.2005.09.042]
9. Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R. Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol. 2001;35(21):4283-8. [Link] [DOI:10.1021/es010063x]
10. Rajfur M, Klos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci Health Part A. 2011;46(12):1401-8. [Link] [DOI:10.1080/10934529.2011.606717]
11. Feng D, Aldrich C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy. 2004;73(1-2):1-10. [Link] [DOI:10.1016/S0304-386X(03)00138-5]
12. Liu Y, Cao Q, Luo F, Chen J. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater. 2009;163(2-3):931-8. [Link] [DOI:10.1016/j.jhazmat.2008.07.046]
13. Lee YC, Chang SP. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol. 2011;102(9):5297-304. [Link] [DOI:10.1016/j.biortech.2010.12.103]
14. Langmuir I. The constitution and fundamental properties of solids and liquids part I solids. J Am Chem Soc. 1916;38(11):2221-95. [Link] [DOI:10.1021/ja02268a002]
15. Freundlich HMF. Over the adsorption in solution. J Phys Chem.1906;57:385-471. [Link]
16. Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim. USSR.1940;12(1):217-22. [Link]
17. Lu J, Li Y, Yan X, Shi B, Wang D, Tang H. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids Surf A Physicochem Eng Asp. 2009;347(1-3):90-6. [Link] [DOI:10.1016/j.colsurfa.2008.12.032]
18. Tunali S, Akar T, Safa Özcan A, Kiran I, Özcan A. Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol. 2006;47(3):105-12. [Link] [DOI:10.1016/j.seppur.2005.06.009]
19. Çetinkaya Dönmez G, Aksu Z, Öztürk A, Kutsal T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999;34(9):885-92. [Link] [DOI:10.1016/S0032-9592(99)00005-9]
20. Alowitz MJ, Scherer MM. Kinetics of nitrate, nitrite and Cr (VI) reduction by iron metal. Environ Sci Technol. 2002;36(3):299-306. [Link] [DOI:10.1021/es011000h]
21. Gupta VK, Rastogi A. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater. 2009;163(1):396-402. [Link] [DOI:10.1016/j.jhazmat.2008.06.104]
22. Chen S, Yue Q, Gao B, Xu X. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr (VI) using modified wheat residue. J Colloid Interface Sci. 2010;349(1):256-64. [Link] [DOI:10.1016/j.jcis.2010.05.057]
23. Sari A, Tuzen M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2008;160(2-3):349-55. [Link] [DOI:10.1016/j.jhazmat.2008.03.005]
24. Jung Y, Choi J, Lee W. Spectroscopic investtigation of magnetite surface for the reduction of hexavalent chromium. Chemosphere. 2007;68(10):1968-75. [Link] [DOI:10.1016/j.chemosphere.2007.02.028]
25. Romera E, González F, Ballester A, Blázquez ML, Mu-oz JA. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol. 2007;98(17):3344-53. [Link] [DOI:10.1016/j.biortech.2006.09.026]
26. Tran HT, Vu ND, Matsukawa M, Okajima M, Kaneko T, Ohki K, et al. Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. J Environ Chem Eng. 2016;4(2):2529-35. [Link] [DOI:10.1016/j.jece.2016.04.038]
27. Sheng PX, Ting YP, Chen JP, Hong L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci. 2004;275(1):131-41. [Link] [DOI:10.1016/j.jcis.2004.01.036]
28. Karthikeyan S, Balasubramanian R, Iyer CS. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions. Bioresour Technol. 2007;98(2):452-5. [Link] [DOI:10.1016/j.biortech.2006.01.010]
29. Apiratikul R, Pavasant P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol. 2008;99(8):2766-77. [Link] [DOI:10.1016/j.biortech.2007.06.036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.