Volume 9, Issue 4 (2018)                   JMBS 2018, 9(4): 537-547 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashjoor S, Yousefzadi M, Zolgharnain H, Kamrani E, Alishahi M. Genotoxicity of magnetic Iron oxide )Fe3O4 (nanoparticles in red blood cells of common carp (Cyprinus carpio) using micronucleus assay under acute and chronic treatments. JMBS 2018; 9 (4) :537-547
URL: http://biot.modares.ac.ir/article-22-14887-en.html
1- Marine Biology Department, Marine Science & Technology Faculty, University of Hormozgan, Bandar Abbas, Iran
2- Marine Biology Department, Marine Science & Technology Faculty, University of Hormozgan, Bandar Abbas, Iran, University of Hormozgan, 9 Kilometer Minab Road, Bandar Abbas, Iran. Postal Code: 7916193145
3- Department of Marine Biology, Faculty of Marine Science & Technology, Khoramshahr University of Marine Science & Technology, Khoramshahr, Iran
4- Clinical Sciences Department, Veterinary Medicine Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract:   (7972 Views)
Aims: In nanoecotoxicology science, fish erythrocyte micronucleus assay for the monitoring genotoxic potential of nanoparticles is a powerful biomarker. This study was conducted with the aim of investigating genotoxicity of magnetic iron oxide (Fe3O4) nanoparticles in red blood cells of common carp (Cyprinus carpio) using micronucleus assay under acute and chronic treatment. Materials and Methods: In the current experimental study, the genotoxit toxicology of Fe3O4 nanoparticles was performed during an acute (96 hours; 5 concentrations including 0, 10, 100, 500, and 1000 mg/l) and chronic (14 days; 3 concentrations including 0, 100, and 500 mg/l) of Fe3O4 nanoparticles in three replications. The data were analyzed by IBM SPSS 19, using two-way ANOVA, and Duncan's new multiple range test.
Findings: Acute exposure to Fe3O4 nanoparticles had no acute toxicity effect juvenile carp (C. carpio). By increasing the concentration of nanoparticles in a 96-hour interval, the frequency of micronucleus () and other abnormal forms around the red blood cell nucleus of juvenile carps showed a significant increase compared to the control group (p<0.05). In the chronic treatment at concentrations of 100 and 500 mg/l of Fe3O4 nanoparticles, the rate of increase in the frequency of micronucleus was similar to the acute functional test of concentration.
Conclusion: Although Fe3O4 nanoparticles do not have acute toxicity effects in common carp and are non-toxic, they tend to induce genotoxic effects by increasing the frequency of micronucleus and other abnormalities of the red blood cell core during a concentration-dependent process. So, it seems that the release of FeO4NPs into the environment, it is probable adverse effects on aquatic ecosystems.
Full-Text [PDF 909 kb]   (2848 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2017/05/8 | Accepted: 2017/12/31 | Published: 2018/12/21

References
1. Mahdavi M, Namvar F, Ahmad MB, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18(5):5954-64. [Link] [DOI:10.3390/molecules18055954]
2. Gupta Ak, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci. 2004;3(1):66-73. [Link] [DOI:10.1109/TNB.2003.820277]
3. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev. 1995;16(2-3):321-34. [Link] [DOI:10.1016/0169-409X(95)00033-4]
4. Reimer P, Weissleder R. Development and experimental use of receptor-specific MR contrast media. Radiologe. 1996;36(2):153-63. [German] https://doi.org/10.1007/s00117-012-2429-6 [Link] [DOI:10.1007/s001170050053]
5. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. J Microencapsul. 1996;13(3):245-55. [Link] [DOI:10.3109/02652049609026013]
6. Gupta PK, Hung CT. Magnetically controlled targeted micro-carrier systems. Life Sci. 1989;44(3):175-86. [Link] [DOI:10.1016/0024-3205(89)90593-6]
7. Kalantari K, Ahmad MB, Shameli K, Mohd Zobir Bin Hussein, Khandanlou R, Khanehzaei H. Size-controlled synthesis of Fe3O4 magnetic nanoparticles in the layers of montmorillonite. J Nanomater. 2014;2014:739485. [Link] [DOI:10.1155/2014/739485]
8. Kulkarni SA, Sawadh PS, Kokate KK. Synthesis and characterization of Fe3O4 nanoparticles for engineering applications. International Conference on Benchmarks in Engineering Science and Technology (ICBEST) 2012. New York: International Journal of Computer Applications (IJCA); 2012. p. 17-8. [Link]
9. Miller MM, Prinz GA, Cheng SF, Bounnak S. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor. Appl Phys Lett. 2002;81(12):2211-3. [Link] [DOI:10.1063/1.1507832]
10. Zhu MT, Wang B, Wang Y, Yuan L, Wang HJ, Wang M, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol Lett. 2011;203(2):162-71. [Link] [DOI:10.1016/j.toxlet.2011.03.021]
11. Ju-Nam Y, Lead JR. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 2008;400(1-3):396-414. [Link] [DOI:10.1016/j.scitotenv.2008.06.042]
12. Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, et al. Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen. 2015;56(2):125-48. [Link] [DOI:10.1002/em.21909]
13. Carrasco KR, Tilbury KL, Myers MS. Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci. 1990;47(11):2123-36. [Link] [DOI:10.1139/f90-237]
14. Ali FK, El-Shehawi AM, Seehy MA. Micronucleus test in fish genome: A sensitive monitor for aquatic pollution. Afr J Biotechnol. 2008;7(5):606-12. [Link]
15. Martins J, Oliva Teles L, Vasconcelos V. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int. 2007;33(3):414-25. [Link] [DOI:10.1016/j.envint.2006.12.006]
16. Hao L, Chen L. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf. 2012;80:103-10. [Link] [DOI:10.1016/j.ecoenv.2012.02.017]
17. Hao L, Wang Z, Xing B. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci (China). 2009;21(10):1459-66. [Link] [DOI:10.1016/S1001-0742(08)62440-7]
18. OECD. Test No. 203: Fish, acute toxicity test. In: OECD. OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems. Paris: OECD Publishing; 1992. [Link]
19. Alishahi M, Dadar M, Mohammadian B. Study on silver nanoparticles toxicity in Cyprinus carpio: Effects on immunohematological and histological changes. 2nd International Congress on Fisheries and Aquaculture Science, Lahijan, Iran. Unknown publisher; 2011. p. 36-47. [Persian] [Link]
20. Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol. 2009;94(4):320-7. [Link] [DOI:10.1016/j.aquatox.2009.07.019]
21. Cavaş T, Könen S. Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis. 2007;22(4):263-8. [Link] [DOI:10.1093/mutage/gem012]
22. Al-Sabti K, Metcalfe CD. Fish micronuclei for assessing genotoxicity in water. Mutat Res. 1995;343(2-3):121-35. [Link] [DOI:10.1016/0165-1218(95)90078-0]
23. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E, et al. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res. 2003;534(1-2):65-75. [Link] [DOI:10.1016/S1383-5718(02)00249-8]
24. Cavaş T, Ergene-Gözükara S. Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquat Toxicol. 2005;74(3):264-71. [Link] [DOI:10.1016/j.aquatox.2005.06.001]
25. Jiraungkoorskul W, Sahaphong S, Kosai P, Kim MH. Micronucleus test: The effect of ascorbic acid on cadmium exposure in fish (Puntius altus). Res J Environ Toxicol. 2007;1(1):27-36. [Link] [DOI:10.3923/rjet.2007.27.36]
26. Cavaş T, Ergene-Gözükara S. Micronucleus test in fish cells: A bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environ Mol Mutagen. 2005;46(1):64-70. [Link] [DOI:10.1002/em.20130]
27. United Nations. Globally Harmonized System of classification and labelling of chemicals (GHS). Herndon V A: United Nations Publications; 2009. pp. 215-20. [Link]
28. OECD. Test No. 474: Mammalian erythrocyte micronucleus test. In: OECD. OECD guidelines for the testing of chemicals, section 4: Health effects. Paris: OECD Publishing; 2016. [Link]
29. OECD. Test No. 487: In vitro mammalian cell micronucleus test. In: OECD. OECD guidelines for the testing of chemicals, section 4: Health effects. Paris: OECD Publishing; 2014. [Link]
30. Morales-Ramírez P, Vallarino-Kelly T, Cruz-Vallejo VL. The OECD's micronucleus test guideline for single exposure to an agent and the genotox-kinetic alternative. Mutagenesis. 2017;32(4):411-5. [Link] [DOI:10.1093/mutage/gex010]
31. Güner U, Muranlı FDG. Micronucleus test, nuclear abnormalities and accumulation of Cu and Cd on Gambusia affinis (Baird & Girard, 1853). Turk J Fish Aquat Sci. 2011;11(4):615-22. [Link] [DOI:10.4194/1303-2712-v11_4_16]
32. Kirsch-Volders M, Decordier I, Elhajouji A, Plas G, Aardema MJ, Fenech M. In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis. 2011;26(1):177-84. [Link] [DOI:10.1093/mutage/geq068]
33. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26(1):125-32. [Link] [DOI:10.1093/mutage/geq052]
34. Ates M, Daniels J, Arslan Z, Farah IO. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess. 2013;185(4):3339-48. [Link] [DOI:10.1007/s10661-012-2794-7]
35. Lapresta-Fernández A, Fernández A, Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends Anal Chem. 2012;32:40-59. [Link] [DOI:10.1016/j.trac.2011.09.007]
36. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, et al. Role of oxidative damage in toxicity of particulates. Free Radic Res. 2010;44(1):1-46. [Link] [DOI:10.3109/10715760903300691]
37. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2(4):MR17-71. [Link] [DOI:10.1116/1.2815690]
38. Santhosh PB, Ulrih NP. Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics. Cancer Lett. 2013;336(1):8-17. [Link] [DOI:10.1016/j.canlet.2013.04.032]
39. Singh N, Jenkins GJ, Nelson BC, Marquis BJ, Maffeis TG, Brown AP, et al. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials. 2012;33(1):163-70. [Link] [DOI:10.1016/j.biomaterials.2011.09.087]
40. Magdolenova Z, Drlickova M, Henjum K, Rundén-Pran E, Tulinska J, Bilanicova D, et al. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology. 2015;9 Suppl 1:44-56. [Link] [DOI:10.3109/17435390.2013.847505]
41. Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol. 2009;6:17. [Link] [DOI:10.1186/1743-8977-6-17]
42. Ahamed M, Alhadlaq HA, Alam J, Khan MA, Ali D, Alarafi S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des. 2013;19(37):6681-90. [Link] [DOI:10.2174/1381612811319370011]
43. Watanabe M, Yoneda M, Morohashi A, Hori Y, Okamoto D, Sato A, et al. Effects of Fe3O4 magnetic nanoparticles on A549 Cells. Int J Mol Sci. 2013;14(8):15546-60. [Link] [DOI:10.3390/ijms140815546]
44. Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726-32. [Link] [DOI:10.1021/tx800064j]
45. Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. Toxicol Lett. 2009;188(2):112-8. [Link] [DOI:10.1016/j.toxlet.2009.03.014]
46. Dubey A, Goswami M, Yadav K, Chaudhary D. Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line. PLoS One. 2015;10(5):e0127493. [Link] [DOI:10.1371/journal.pone.0127493]
47. Negin Taji A, Archangi B, Movahedinia AA, Safahieh AR, Eskandari GR. Use of thyroid hormones and micronucleus as potential early biomarkers in yellowfin seabream (Acanthopagrus latus) exposed to bisphenol A. J Oceanogr. 2014;4(16):23-32. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.