Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 465-472 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashjoor S, Alishahi M, Tulaby Dezfuly Z. In vivo Comparative Toxicity of Silver Nanoparticles and Bio-productivity in Zebrafish (Embryo and Adult Stages). JMBS 2018; 9 (3) :465-472
URL: http://biot.modares.ac.ir/article-22-15751-en.html
1- Marine Biology Department, Marine Science & Technology Faculty, Hormozgan University, Bandar Abbas, Iran
2- Clinical Sciences Department, Veterinary Medicine Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Shahid Chamran University of Ahvaz, Golestan Boulevard, Ahvaz, Iran. Postal Code: 8315161357 , alishahimoj@gmail.com
3- Clinical Sciences Department, Veterinary Medicine Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract:   (3864 Views)
Aims: The bio-toxicity of silver nanoparticles (AgNPs) in the aquatic ecosystem and the detection of lethal concentrations of this material are of importance. The aim of this study was in vivo comparative toxicity of silver nanoparticles and bio-productivity in zebrafish (Danio rerio) in embryo and adult stages.
Materials and Methods: The present experimental study was carried out on 30 fertilized eggs and 30 adult zebrafish and the effects of chemical and bio-productivity of AgNPs were evaluated by brown seaweed (Sargassum boveanum) in evolutionary stages of the embryo and adult zebrafish with a control group and in incremental concentrations. The mortality rate was recorded at 24, 48, 72, and 96 hours after exposure and the data were analyzed by EPA Probit Analysis 1.5 and SPSS 19 softwares, using one-way analysis of variance and Duncan's multiple range test.
Findings: The toxicity of both types of AgNPs in both evolutionary stages was increased with increasing concentrations and time (p<0.05). After 96 hours, the lethal concentration 50 (LC50) in adult fish was 0.788mg/l for chemical AgNPs and 0.409mg/l for bio-produced AgNPs. Mortality rate at the highest concentration (3mg/l) of AgNPs at 72 and 96 hours in all groups was 100%.
Conclusion: Comparison of the toxicity result showed that the biosynthesis form of AgNPs is more toxic potential than chemical form of AgNPs. It seems the sensitivity of embryo stage to both of silver nanoparticles more than to mature stage.
Full-Text [PDF 687 kb]   (2709 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2017/04/28 | Accepted: 2017/10/24 | Published: 2018/09/22

References
1. Klaine S.J, Koelmans A.A, Horne N, Carley S, Handy R.D, Kapustka L, Nowack B, von der Kammer F. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem. 2012;31(1):3-14. [Link] [DOI:10.1002/etc.733]
2. Schmidt CW. Nanotechnology-related environmental, health, and safety research: Examining the national strategy. Environ Health Perspect. 2009;117(4):A158-61. [Link] [DOI:10.1289/ehp.117-a158]
3. Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 2008;400(1-3):396-414. [Link] [DOI:10.1016/j.scitotenv.2008.06.042]
4. Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruiz F, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Bioadhes. Biofouling. 2013;29(6):651-60. [Link] [DOI:10.1080/08927014.2013.794225]
5. Arya, V.R. (2013). Biological synthesis of silver nanoparticles from aqueous extract of endophytic fungus Aspergillus terrus and its antibacterial activity. Int. J. Nanomater.Biostruct. 3(2), 35-37 [Link]
6. Fries R, Greßler S, Simkó M, Gazsó A, Fiedeler U, Nentwich M. Nanosilver [Internet]. Vienna: Institute of Technology Assessment of the Austrian Academy of Sciences (ITA); 2010 [cited 10 Nov 2010]. Available from: http://epub.oeaw.ac.at/ita/nanotrust-dossiers/dossier010en.pdf [Link]
7. Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D. Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J. 2014;2014:256919. [Link] [DOI:10.1155/2014/256919]
8. Iravani S, Korbekandi H, Mirmohammadi S.V, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385-406. [Link]
9. Prabhu S, Poulose E. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32. [Link] [DOI:10.1186/2228-5326-2-32]
10. Gavhane AJ, Padmanabhan P, Kamble SP, Jangle SN. Synthesis of silver nanoparticles using extract of Neem leaf and triphala and evaluation of their Antimicrobial activities. Int J Pharm Bio Sci. 2012;3(3):88-100. [Link]
11. Senapati S, Syde A, Moeez S, Kumar A, Ahmah A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett. 2012;79:116-8. [Link] [DOI:10.1016/j.matlet.2012.04.009]
12. Roy N, Gaur A, Jain A, Bhattacharya S, Rani V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ Toxicol Pharmacol. 2013;36(3):807-12. [Link] [DOI:10.1016/j.etap.2013.07.005]
13. Lin S, Zhao Y, Nel AE, Lin S. Zebrafish: An in vivo model for nano EHS studies. Small. 2013;9(9-10):1608-18. [Link] [DOI:10.1002/smll.201202115]
14. Mashjoor S, Alishahi M, Tulaby dezfuly Z. Study of acute toxicity of aqueous suspensions of chemical and biogenic silver nanoparticles produced by marine algae, Sargassum boveanum on Artemia fransiscana (Nauplius and adult) as model organism. J Wetland Ecobiolo. 2017;8(4):83-94. [Prsian] [Link]
15. Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater Lett. 2014;137:1-4. 18- OECD. Test No. 203: Fish, acute toxicity test. In: OECD. OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems. Paris: OECD Publishing; 1992. 19- Zhu X, Tian S, Cai Z. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. 2012;7(9):e46286. [Link]
16. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, et al. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology. 2012;10:14. [Link] [DOI:10.1186/1477-3155-10-14]
17. Martins J, Oliva Teles L, Vasconcelos V. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int. 2007;33(3):414-25. [Link] [DOI:10.1016/j.envint.2006.12.006]
18. OECD. Test No. 203: Fish, acute toxicity test. In: OECD. OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems. Paris: OECD Publishing; 1992. [Link]
19. Zhu X, Tian S, Cai Z. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. 2012;7(9):e46286. [Link] [DOI:10.1371/journal.pone.0046286]
20. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol. 2012;2012:293784. [Link] [DOI:10.1155/2012/293784]
21. Mc Shan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116-27. [Link] [DOI:10.1016/j.jfda.2014.01.010]
22. Lapresta-Fernández A, Fernández A, Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends Anal Chem. 2012;32:40-59. [Link] [DOI:10.1016/j.trac.2011.09.007]
23. Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol. 2009;94(4):320-7. [Link] [DOI:10.1016/j.aquatox.2009.07.019]
24. Ates M, Daniels J, Arslan Z, Farah IO. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess. 2013;185(4):3339-48. [Link] [DOI:10.1007/s10661-012-2794-7]
25. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 2009;23(6):1076-84. [Link] [DOI:10.1016/j.tiv.2009.06.001]
26. Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, et al. Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci. 2014;4(7):881-8. [Link] [DOI:10.1007/s13204-013-0271-4]
27. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. 2009;5(16):1897-910. [Link] [DOI:10.1002/smll.200801716]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.