Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 609-615 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini F, Mohamad Soltani B, Baharvand H, Hosseinkhani S. Investigation of the Expression and the Effect of SPTBN4-miR1 in Process of Nerve Differentiation of NT2 Cells. JMBS 2019; 10 (4) :609-615
URL: http://biot.modares.ac.ir/article-22-29069-en.html
1- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , soltanib@modares.ac.ir
3- Royan Institute, Tehran, Iran
4- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (3937 Views)
The SPTBN4 gene, a part of the spectrin protein family, plays important roles in various cellular processes, including cell cycle, nerve cell development, and so on. Recently, a new miRNA has been found in this SPTBN4 gene, which was registered at the NCBI database. The aim of the present study was to investigate the expression of this miRNA, called SPTBN4-miR1, in the process of differentiation of human embryonal carcinoma cell line NT2 and also the overexpression effect of this miRNA on the differentiation of these cells. RT-qPCR results indicate that SPTBN4-miR1-5p and SPTBN4-miR1-3p show a significant increase in expression in the process of neural differentiation from day three until the 8th and 14th day of differentiation. Then, after overexpressing the SPTBN4-miR1 precursor in NT2 cells and retinoic acid treatment, the expression of pluripotent and differentiation revealed the role of SPTBN4-miR1-5p and SPTBN4-miR1-3p in promoting differentiation and exclusion from the pluripotent state. It seems that by making further studies and finding out the possible targets of these miRNAs, a distinctive marker can be achieved and used to improve the differentiation process.
Full-Text [PDF 880 kb]   (1412 Downloads)    
Article Type: Original Research | Subject: Molecular biotechnology
Received: 2019/01/6 | Accepted: 2019/03/13 | Published: 2019/12/21

References
1. Berghs S, Aggujaro D, Dirkx R, Maksimova E, Stabach P, Hermel JM, et al. βIV spectrin, a new spectrin localized at axon initial segments and nodes of Ranvier in the central and peripheral nervous system. J Cell Biol. 2000;151(5):985-1001. [Link] [DOI:10.1083/jcb.151.5.985]
2. Knierim E, Gill E, Seifert F, Morales-Gonzalez S, Unudurthi SD, Hund TJ, et al. A recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness. Hum Genet. 2017;136(7):903-10. [Link] [DOI:10.1007/s00439-017-1814-7]
3. Zhang R, Zhang C, Zhao Q, Li D. Spectrin: Structure, function and disease. Sci China Life Sci. 2013;56(12):1076-85. [Link] [DOI:10.1007/s11427-013-4575-0]
4. Wang CC, Ortiz-González XR, Yum SW, Gill SM, White A, Kelter E, et al. βIV spectrinopathies cause profound intellectual disability, congenital hypotonia, and motor axonal neuropathy. Am J Hum Genet. 2018;102(6):1158-68. [Link] [DOI:10.1016/j.ajhg.2018.04.012]
5. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10a):1902-10. [Link] [DOI:10.1101/gr.2722704]
6. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. [Link] [DOI:10.1016/j.cell.2004.12.035]
7. Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res. 2005;65(9):3509-12. [Link] [DOI:10.1158/0008-5472.CAN-05-0298]
8. Kim VN. MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376-85. [Link] [DOI:10.1038/nrm1644]
9. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597-610. [Link] [DOI:10.1038/nrg2843]
10. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642-55. [Link] [DOI:10.1016/j.cell.2009.01.035]
11. Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell. 2004;16(6):861-5. [Link] [DOI:10.1016/j.molcel.2004.12.002]
12. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci. 2006;29:77-103. [Link] [DOI:10.1146/annurev.neuro.29.051605.112839]
13. Trivedi S, Ramakrishna G. miRNA and neurons. Int J Neurosci. 2009;119(11):1995-2016. [Link] [DOI:10.1080/00207450903139788]
14. Mehler MF, Mattick JS. Non‐coding RNAs in the nervous system. J Physiol. 2006;575(2):333-41. [Link] [DOI:10.1113/jphysiol.2006.113191]
15. Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Aldred SF, et al. Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One. 2009;4(5):e5605. [Link] [DOI:10.1371/journal.pone.0005605]
16. Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007;26(4):219-25. [Link] [DOI:10.1089/dna.2006.0556]
17. Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ, Andrews PW. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells. 2008;26(12):3068-74. [Link] [DOI:10.1634/stemcells.2008-0530]
18. Hsieh CH, Chen WM, Hsieh YS, Fan YC, Yang PE, Kang ST, et al. A novel multi-gene detection platform for the analysis of miRNA expression. Sci Rep. 2018;8(1):10684. [Link] [DOI:10.1038/s41598-018-29146-7]
19. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38(3):323-32. [Link] [DOI:10.1016/j.molcel.2010.03.013]
20. Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 2010;7(1):36-41. [Link] [DOI:10.1016/j.stem.2010.06.012]
21. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647-58. [Link] [DOI:10.1016/j.cell.2009.02.038]
22. Moradi S, Asgari S, Baharvand H. Concise review: Harmonies played by microRNAs in cell fate reprogramming. Stem Cells. 2014;32(1):3-15. [Link] [DOI:10.1002/stem.1576]
23. Panepucci RA, De Souza Lima IM. Arrayed functional genetic screenings in pluripotency reprogramming and differentiation. Stem Cell Res Ther. 2019;10(1):24. [Link] [DOI:10.1186/s13287-018-1124-6]
24. Kichkin E, Visvanathan A, Lovicu FJ, Shu DY, Das SJ, Reddel SW, et al. Postnatal development of spasticity following transgene insertion in the mouse βIV spectrin gene (SPTBN4). J Neuromuscul Dis. 2017;4(2):159-64. [Link] [DOI:10.3233/JND-160197]
25. Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol. 2014;47(1):1-11. [Link] [DOI:10.5115/acb.2014.47.1.1]
26. Serrano F, Bernard WG, Granata A, Iyer D, Steventon B, Kim M, et al. A novel human pluripotent stem cell-derived neural crest model of Treacher Collins Syndrome shows defects in cell death and migration. Stem Cells Dev. 2019;28(2):81-100. [Link] [DOI:10.1089/scd.2017.0234]
27. Fernald RD. Eyes: Variety, development and evolution. Brain Behav Evol. 2004;64(3):141-7. [Link] [DOI:10.1159/000079743]
28. Walcher T, Xie Q, Sun J, Irmler M, Beckers J, Öztürk T, et al. Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation. Development. 2013;140(5):1123-36. [Link] [DOI:10.1242/dev.082875]
29. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124-8. [Link] [DOI:10.1038/nature07299]
30. Melton C, Judson RL, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010;463(7281):621-6. [Link] [DOI:10.1038/nature08725]
31. Kawasaki H, Taira K. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature. 2003;423(6942):838-42. [Link] [DOI:10.1038/nature01730]
32. Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol. 2009;29(19):5290-305. [Link] [DOI:10.1128/MCB.01694-08]
33. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1-2):85-91. [Link] [DOI:10.1016/S0165-2478(02)00023-8.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.