Volume 12, Issue 2 (2022)                   JMBS 2022, 12(2): 21-33 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi B, Koupaei B. Biological synthesis of silver nanoparticles using the aqueous extract of Psidium guajava (PG) and its antibacterial activity. JMBS 2022; 12 (2) :21-33
URL: http://biot.modares.ac.ir/article-22-29203-en.html
1- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, IRAN. , bsadeghi1177@gmail.com
2- Islamic Azad University, Tonekbon Branch
Abstract:   (1633 Views)
In the present work, we describe the synthesis of silver nanoparticles (Ag-NPs) using seed aqueous extract of Psidium guajava (PG) and its antibacterial activity. UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDAX) were performed to ascertain the formation of Ag-NPs. It was observed that the growths of Ag-NPs are stopped within 35 min of reaction time. The synthesized Ag-NPs were characterized by a peak at 446 nm in the UV–visible spectrum. XRD confirmed the crystalline nature of the nanoparticles of 10-20 nm size. The XRD peaks at 38◦, 44◦, 64◦ and 77◦ can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg’s reflections of cubic structure of metallic silver, respectively. The FTIR result clearly showed that the extracts containing OH as a functional group act in capping the nanoparticles synthesis. Antibacterial activities of Ag-NPs were tested against the growth of Gram-positive (S. aureus) using SEM. The inhibition was observed in the Ag-NPs against S. aureus. The results suggest that the synthesized Ag-NPs act as an effective antibacterial agent. It is confirmed that Ag-NPs are capable of rendering high antibacterial efficacy and hence has a great potential in the preparation of used drugs against bacterial diseases. The results confirmed that the (PG) is a very good eco friendly and nontoxic source for the synthesis of Ag-NPs as compared to the conventional chemical/physical methods.
Full-Text [PDF 367 kb]   (1121 Downloads)    
Article Type: Original Research | Subject: Nanotechnology
Received: 2019/01/8 | Accepted: 2020/12/13 | Published: 2022/01/30

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.