Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 483-489 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirazian P, Ghasemi A, Asad S, Amoozgar M. A Study on the Potential of Uricase Production by Halophilic Bacteria and Enzyme Production Optimization. JMBS 2019; 10 (3) :483-489
URL: http://biot.modares.ac.ir/article-22-35417-en.html
1- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran
2- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran, Biotechnology Department, No.13, Shafiee Alley, Ghods Street, Enghelab Avenue, Tehran, Iran
3- Microbiology Department, Biology Faculty, University of Tehran, Tehran, Iran
Abstract:   (4482 Views)
Uricase (EC 1.7.3.3) was first utilized in the 1970s, to prevent the uric acid increase in the blood stream and the formation of urate crystals. Later, this enzyme was produced using recombinant DNA technology. However, immunogenic responses towards the alien protein in some patients has led to searching for new uricases with more desirable properties. Considering the interesting characteristics of enzymes of halophilic and halotolerant bacteria, the potential of 85 native Iranian halophilic bacteria isolated from Urmia salt lake for uricase production was evaluated, and the best producer was identified by means of 16S rRNA gene sequencing with more than 99% similarity to Halomonas sulfidaeris. In the following, significant physicochemical and environmental factors for optimal production of uricase by the selected strain were determined. The best combination of effective factors for the enzyme production was identified by Response Surface Methodology (RSM). The optimum enzyme production was found to be at pH=8, 34.5°C, 3% NaCl, and 7.5g/L of uric acid which resulted in the significant production of 32.5U/ml. This strain can be used in subsequent studies regarding the therapeutic application of this halotolerant enzyme.
Full-Text [PDF 923 kb]   (2206 Downloads)    
Subject: Agricultural Biotechnology
Received: 2019/08/3 | Accepted: 2017/12/7 | Published: 2019/09/21

References
1. Retailleau P, Colloc'h N, Vivarès D, Bonneté F, Castro B, El-Hajji M, et al. Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 3): 453-62. [Link] [DOI:10.1107/S0907444903029718]
2. Retailleau P, Colloc'h N, Vivarès D, Bonneté F, Castro B, El Hajji M, et al. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site. Acta Crystallogr D Biol Crystallogr. 2005;61(3):218-29. [Link] [DOI:10.1107/S0907444904031531]
3. Collings I, Watier Y, Giffard M, Dagogo S, Kahn R, Bonneté F, et al. Polymorphism of microcrystalline urate oxidase from Aspergillus flavus. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 5):539-48. [Link] [DOI:10.1107/S0907444910005354]
4. Suresh E. Diagnosis and management of gout: a rational approach. Postgrad Med J. 2005;81(959):572-9. [Link] [DOI:10.1136/pgmj.2004.030692]
5. Terkeltaub R, Bushinsky DA, Becker MA. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther. 2006;8 Suppl 1:S4. [Link] [DOI:10.1186/ar1909]
6. Conen D, Wietlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, et al. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health. 2004;4:9. [Link] [DOI:10.1186/1471-2458-4-9]
7. Dinnel J, Moore BL, Skiver BM, Bose P. Rasburicase in the management of tumor lysis: an evidence-based review of its place in therapy. Core Evid. 2015;10:23-38. [Link] [DOI:10.2147/CE.S54995]
8. Pession A, Melchionda F, Castellini C. Pitfalls, prevention, and treatment of hyperuricemia during tumor lysis syndrome in the era of rasburicase (recombinant urate oxidase). Biologics. 2008;2(1):129-41. [Link] [DOI:10.2147/BTT.S1522]
9. Trifilio S, Gordon L, Singhal S, Tallman M, Evens A, Rashid K, et al. Reduced-dose rasburicase (recombinant xanthine oxidase) in adult cancer patients with hyperuricemia. Bone Marrow Transplant. 2006;37(11):997-1001. [Link] [DOI:10.1038/sj.bmt.1705379]
10. Cammalleri L, Malaguarnera M. Rasburicase represents a new tool for hyperuricemia in tumor lysis syndrome and in gout. Int J Med Sci. 2007;4(2):83-93. [Link] [DOI:10.7150/ijms.4.83]
11. Ensor CM, Clark MA, Holtsberg FW. Peg-modified uricase [Internet]. Menlo Park, California: Google Patents; 2005 [cited 2018 Jul 9]. Available from: https://patents.google.com/patent/US6913915. [Link]
12. Ueng S. Rasburicase (Elitek): a novel agent for tumor lysis syndrome. Proc (Bayl Univ Med Cent). 2005;18(3):275-9. [Link] [DOI:10.1080/08998280.2005.11928082]
13. Garay RP, El-Gewely MR, Labaune JP, Richette P. Therapeutic perspectives on uricases for gout. Joint Bone Spine. 2012;79(3):237-42. [Link] [DOI:10.1016/j.jbspin.2012.01.004]
14. Yang X, Yuan Y, Zhan CG, Liao F. Uricases as therapeutic agents to treat refractory gout: Current states and future directions. Drug Dev Res. 2012;73(2):66-72. [Link] [DOI:10.1002/ddr.20493]
15. Nguyen AP, Ness GL. Hemolytic anemia following rasburicase administration: a review of published reports. J Pediatr Pharmacol Ther. 2014;19(4):310-6. [Link]
16. Allen KC, Champlain AH, Cotliar JA, Belknap SM, West DP, Mehta J, et al. Risk of anaphylaxis with repeated courses of rasburicase: a research on adverse drug events and reports (RADAR) project. Drug Saf. 2015;38(2):183-7. [Link] [DOI:10.1007/s40264-014-0255-7]
17. Tabatabaei Yazdi M, Zarrini GR, Mohit E, Faramarzi MA, Setayesh N, Sedighi N, et al. Mucor hiemalis: a new source for uricase production. World J Microbiol Biotechnol. 2006;22(4):325-30. [Link] [DOI:10.1007/s11274-005-9030-3]
18. Nanda P, Babu PE. Isolation, screening and production studies of uricase producing bacteria from poultry sources. Prep Biochem Biotechnol. 2014;44(8): 811-21. [Link] [DOI:10.1080/10826068.2013.867875]
19. Lee NSIS, Mansouri Khosravi HR, Ibrahim N, Shahir S. Isolation, partial purification and characterization of thermophilic uricase from Pseudomonas otitidis strain SN4. Malaysian J Microbiol. 2015;11(4): 352-7. [Link]
20. Ghasemi A, Asad S, Kabiri M, Dabirmanesh B. Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol. 2017;101(19):7227-38. [Link] [DOI:10.1007/s00253-017-8456-5]
21. Honarbakhsh F, Amoozegar MA, Amolmaali S, Mehrshad M. Screening for uricase enzyme from halotolerant bacteria. 15th International Congress of Microbiology Tehran, Iran. Tehran: Tehran University of Medical Sciences; 2014. [Link]
22. Shirazian P, Asad S, Amoozegar MA. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J. 2016;15:268-79. [Link]
23. Fraisse L, Bonnet MC, de Farcy JP, Agut C, Dersigny D, Bayol A. A colorimetric 96-well microtiter plate assay for the determination of urate oxidase activity and its kinetic parameters. Anal Biochem. 2002;309(2):173-9. [Link] [DOI:10.1016/S0003-2697(02)00293-2]
24. Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009;2009:574398. [Link] [DOI:10.1155/2009/574398]
25. Ram SK, Raval K, JagadeeshBabu PE. Enhancement of a novel extracellular uricase production by media optimization and partial purification by aqueous three-phase system. Prep Biochem Biotechnol. 2015;45(8):810-24. [Link] [DOI:10.1080/10826068.2014.970690]
26. C Selvaraj PTV. Screening, production and optimization of uricase from P. aeruginosa. Europ J Biotechnol Biosci. 2017;5(1):57-61. [Link]
27. Pawar SV, Rathod VK. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model. Prep Biochem Biotechnol. 2018;48(1):24-33. [Link] [DOI:10.1080/10826068.2017.1381623]
28. Abdel-Fattah YR, Saeed HM, Gohar YM, El-Baz MA. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 2005;40(5):1707-14. [Link] [DOI:10.1016/j.procbio.2004.06.048]
29. Atty FK, Joseph J. Isolation and identification of uric acid degrading bacteria, optimization of uricase production and purification of uricase enzyme. Int J Adv Res. 2016;4(12):2732-42. [Link] [DOI:10.21474/IJAR01/2702]
30. pooja nanda, pejb, jenifer fernandes, pranita hazarika, rohini raju dhabre. studies on production, optimization and purification of uricase from Gliocladium viride. Res Biotechnol. 2012;3(4):35-46. [Link]
31. Anderson A, Vijayakumar S. Isolation and optimization of Pseudomonas aeruginosa for uricase production. Int J Pharm Biosci. 2012;3(1):B143-50. [Link]
32. Zhou Xl, Ma XH, Sun GQ, Li X, Guo KP. Isolation of a thermostable uricase-producing bacterium and study on its enzyme production conditions. Process Biochem. 2005;40(12):3749-53. [Link] [DOI:10.1016/j.procbio.2005.05.002]
33. Young CR, Ebringer A, Archer JR. Antigen dose and strain variation as factors in the genetic control of the immune response to sperm whale myoglobin. Immunology, 1978. 34(3): p. 571-9. [Link]
34. Korver K, Boeschoten EW, Krediet RT, van Steenis G, Schellekens PT. Dose-response effects in immunizations with keyhole limpet haemocyanin and rabies vaccine: shift in some immunodeficiency states. Clin Exp Immunol. 1987;70(2):328-35. [Link]
35. Paul WE, Siskind GW, Benacerraf B. Specificity of cellular immune responses. Antigen concentration dependence of stimulation of DNA synthesis in vitro by specifically sensitized cells, as an expression of the binding characteristics of cellular antibody. J Exp Med. 1968;127(1):25-42. [Link] [DOI:10.1084/jem.127.1.25]
36. Wackett LP. Industrial applications of microbial salt-tolerant enzymes: an annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microb Biotechnol. 2012;5(5):668-9. [Link] [DOI:10.1111/j.1751-7915.2012.00355.x]
37. Oren A. Industrial and environmental applications of halophilic microorganisms. Environ Technol, 2010;31(8-9):825-34. [Link] [DOI:10.1080/09593330903370026]
38. Patel S, Saraf M. Perspectives and application of halophilic enzymes. In: Maheshwari DK, Saraf M, editors. Halophiles: biodiversity and sustainable exploitation. New York: Springer; 2015. pp. 403-19. [Link] [DOI:10.1007/978-3-319-14595-2_15]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.