Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 1-8 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rasekhi M, Bakhshande ‎ B, Sadeghizadeh M, Salimi A, Soleimani M. Production of Recombinant HEK293T with miR-1 ‎Overexpression as a Biological Model for Cardiac Studies. JMBS 2018; 9 (1) :1-8
URL: http://biot.modares.ac.ir/article-22-13983-en.html
1- ‎National Institute of Genetic Engineering & Biotechnology, Tehran, Iran
2- Biotechnology Department, Science Faculty, University of Tehran, Tehran, Iran, Biotechnology Department, No. 13, Shafiee Alley, Qods Street, Enqelab Sq., Tehran, Iran , b.bakhshandeh@ut.ac.ir
3- ‎Genetic Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
4- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
5- Hematology Departmen, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (9783 Views)
Aims: The induction of artificial over-expression of miRNAs is an appropriate approach to more effective cell differentiation. The significant role of microRNA-1(miR-1) has been reported in the development and differentiation of cardiac cells. Lentivirus is an effective vector for stable cell line production. The aim of this study was the production of recombinant HEK293T with miR-1 overexpression as a biological model for cardiac studies.
Materials & Methods: In this experimental study, HEK 293T cells were cultured in DMEM medium with 10% Fetal Bovine Serum (FBS) and L-glutamine 2mM and Penicillin-Streptomycin 1X in incubator medium. After cloning of miR-1 gene, recombinant clones were selected and the recombination was confirmed by sequencing. The miR-1 carrying vector and auxiliary vectors were packaged in the HEK293T to produce the recombinant virus. The infection of HEK293T by recombinant virus was performed in order to achieve stable cell line. Then, GFP fluorescent marker evaluated the efficiency of transfection and effective virus dilution. Finally, the alteration in expression level of miR-1 was assessed by qPCR. Data analysis was performed by comparing the threshold cycle and Pfaffl method.
Findings: The most GFP expression was detected in transfected cells by 150 micromole dilution. GFP fluorescent marker facilitated optimization and purification of recombinant cells. qPCR investigation demonstrated the significant increase in expression of miR-1 in transfected cells in comparison to controls.
Conclusion: The stable recombinant HEK293T miR-1 over-expressing cell line in lentivirus can be utilized as a suitable biological model for investigation of cardiac evolution and development processes.
Full-Text [PDF 1073 kb]   (3420 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/03/12 | Accepted: 2018/01/27 | Published: 2018/05/22

References
1. ‎Karunakaran D, Rayner KJ. MicroRNAs in cardiovascular health: From order to disorder. Endocrinology. ‎‎2013;154(11):4000-9.‎ [Link] [DOI:10.1210/en.2013-1299]
2. ‎Jackson A L, Levin AA. Developing microRNA therapeutics: Approaching the unique complexities. Nucleic ‎Acid Ther. 2012;22(4):213-25.‎ [Link]
3. Hertel J, Langenberger D, Stadler PF. Computational prediction of microRNA genes. Methods Mol Biol. ‎‎2014;1097:437-56.‎ [Link] [DOI:10.1007/978-1-62703-709-9_20]
4. Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic ‎Acids Res. 2011;39(16):6845-53.‎ [Link]
5. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: Novel biomarkers and extracellular ‎communicators in cardiovascular disease?. Circ Res. 2012;110(3):483-95.‎ [Link] [DOI:10.1161/CIRCRESAHA.111.247452]
6. ‎Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011;38(6):724-33.‎ [Link] [DOI:10.1053/j.seminoncol.2011.08.006]
7. Ajami M, Atashi A, Soleimani M, Ajami M, Kaviani S. Comparison of miR-24, miR-106aand miR-107 ‎expression in identical twins of different ages. J Zanjan Univ Med Sci Health Serv. 2015;23(96):22-33. ‎‎[Persian]‎ [Link]
8. Bakhshandeh B, Soleimani M, Hafizi M, Paylakhi SH, Ghaemi N. MicroRNA signature associated with ‎osteogenic lineage commitment. Mol Biol Rep. 2012;39(7):7569-81.‎ [Link] [DOI:10.1007/s11033-012-1591-2]
9. Bakhshandeh B, Soleimani M, Paylakhi SH, Ghaemi N. A microRNA signature associated with chondrogenic ‎lineage commitment. J Genet. 2012;91(2):171-82.‎ [Link] [DOI:10.1007/s12041-012-0168-0]
10. Bakhshandeh B, Hafizi M, Ghaemi N, Soleimani M. Down-regulation of miRNA-221 triggers osteogenic ‎differentiation in human stem cells. Biotechnol Lett. 2012;34(8):1579-87.‎ [Link] [DOI:10.1007/s10529-012-0934-3]
11. Cai B, Pan Z, Lu Y. The roles of microRNAs in heart diseases: A novel important regulator. Curr Med ‎Chem. 2010;17(5):407-11.‎ [Link]
12. Silvestri P, Di Russo C, Rigattieri S, Fedele S, Todaro D, Ferraiuolo G, et al. MicroRNAs and ischemic heart ‎disease: Towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. ‎Recent Pat Cardiovasc Drug Discov. 2009;4(2):109-18.‎ [Link]
13. Malizia AP, Wang DZh. MicroRNAs in cardiomyocyte development. Wiley Interdiscip Rev Syst Biol Med. ‎‎2011;3(2):183-90.‎ [Link]
14. Li J, Dong X, Wang Zh, Wu J. MicroRNA-1 in cardiac diseases and cancers. Korean J Physiol Pharmacol. ‎‎2014;18(5):359-63.‎ [Link] [DOI:10.4196/kjpp.2014.18.5.359]
15. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and ‎microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228-33.‎ [Link]
16. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-mediated in ‎vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. ‎‎2012;110(11):1465-73.‎ [Link]
17. Mahmoodzadeh A, Pourfatollah A, Karimi M, Moazzeni S. Induction of tolerogenic murine dendritic cells ‎by downregulating the co-stimulatory molecule of cd40 using lentivirus vector. J Zanjan Univ Med Sci Health ‎Serv. 2014;22(94):1-10. [Persian]‎ [Link]
18. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, ‎cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303-17.‎ [Link]
19. Ranji N, Sadeghizadeh M, Shokrgozar MA, Bakhshandeh B, Karimipour M, Amanzadeh A, et al. MiR-17-‎‎92 cluster: An apoptosis inducer or proliferation enhancer. Mol Cell Biochem. 2013;380(1-2):229-38.‎ [Link]
20. Metcalf D, Carpinelli MR, Hyland C, Mifsud S, Dirago L, Nicola NA, et al. Anomalous megakaryocytopoiesis ‎in mice with mutations in the c-Myb gene. Blood. 2005;105(9):3480-7.‎ [Link]
21. Lo KW, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. ‎Regen Med. 2012;7(4):535-49.‎ [Link] [DOI:10.2217/rme.12.33]
22. Ahvaz HH, Soleimani M, Mobasheri H, Bakhshandeh B, Shakhssalim N, Soudi S, et al. Effective ‎combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle ‎cells: Implication for bladder tissue engineering. J Mater Sci Mater Med. 2012;23(9):2281-90.‎ [Link]
23. Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole ‎organs. Front Bioeng Biotechnol. 2015;3:43.‎ [Link]
24. Bakhshandeh B, Soleimani M, Hafizi M, Ghaemi N. A comparative study on nonviral genetic modifications ‎in cord blood and bone marrow mesenchymal stem cells. Cytotechnology. 2012;64(5):523-40.‎ [Link] [DOI:10.1007/s10616-012-9430-9]
25. Halff EF, Versteeg M, Brondijk TH, Huizinga EG. When less becomes more: Optimization of protein ‎expression in HEK293-EBNA1 cells using plasmid titration - a case study for NLRs. Protein Expr Purif. ‎‎2014;99:27-34.‎ [Link] [DOI:10.1016/j.pep.2014.03.010]
26. Huang F, Tang L, Fang ZhF, Hu XQ, Pan JY, Zhou ShH. MiR-1-mediated induction of cardiogenesis in ‎mesenchymal stem cells via downregulation of Hes-1. BioMed Res Int. 2013;2013: ID 216286.‎ [Link]
27. Wang TY, Zhang QQ, Zhang X, Sun QL, Zhao CP, Wang XY. The effect of recombinant lentiviral vector ‎encoding miR-145 on human esophageal cancer cells. Tumour Biol. 2015;36(12):9733-8.‎ [Link] [DOI:10.1007/s13277-015-3743-1]
28. So KH, Han YJ, Park HY, Kim JG, Sung DJ, Bae YM, et al. Generation of functional cardiomyocytes from ‎mouse induced pluripotent stem cells. Int J Cardiol. 2011;153(3):277-85.‎ [Link]
29. Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, et al. Generation of human ‎melanocytes from induced pluripotent stem cells. PLoS One. 2011;6(1):e16182.‎ [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.