Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 331-338 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzapoor armaki A, Ranjbar B. Design and Fabrication of Self-assembled Super Nanonetworks of Carbon Nanotube by Self-complimentary DNA. JMBS 2018; 9 (3) :331-338
URL: http://biot.modares.ac.ir/article-22-24436-en.html
1- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran , ranjbarb@modares.ac.ir
Abstract:   (7755 Views)
Aims: Compelling approach in molecular self-assembly has caused an appropriate bottom-up approach to build and design the systems and patterns with specific performance and capabilities. The aim of the current study was the design and fabrication of self-assembled super nanonetworks of carbon nanotube by self-complementary DNA and its spectroscopic study.
Materials and Methods: In the present experimental study, the sticky oligonucleotide sequence, connected to the amine groups at one end, was connected to the carboxyl groups at the beginning and end of the carbon nanotubes with covalent bond. Then, oligonucleotide connected these systems as interconnected networks. After the preparation of these nanonetworks, their biophysical properties were studied through ultraviolet–visible spectroscopy (UV-vis) and polarimetry and circular dichroism (CD) spectroscopy.
Findings: UV-vis specific absorption peak increased and DNA sequences specific peak in CD spectra appeared with DNA sequences bind to carbon nanotubes.
Conclusion: After adding the connecting sequences to the constructive units, carbon nanotubes come in the form of a complex network. The formation of network nanostructures made of carbon nanotubes by the base pair of paired oligonucleotide sequences is clearly visible in UV-vis spectra.
Full-Text [PDF 1254 kb]   (2500 Downloads)    
Subject: Agricultural Biotechnology
Received: 2016/02/29 | Accepted: 2016/09/25 | Published: 2018/09/22

References
1. Weizmann Y, Lim J, Chenoweth DM, Swager TM. Regiospecific synthesis of Au-nanorod/SWCNT/Au-nanorod heterojunctions. Nano Lett. 2010;10(7):2466-9. [Link] [DOI:10.1021/nl1008025]
2. Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PW, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol. 2010;5(1):61-6. [Link] [DOI:10.1038/nnano.2009.311]
3. He Y, Liu H, Chen Y, Tian Y, Deng Z, Ko SH, et al. DNA-based nanofabrications. Microsc Res Tech. 2007;70(6):522-9. [Link] [DOI:10.1002/jemt.20475]
4. Lin C, Liu Y, Yan H. Designer DNA nanoarchitectures. Biochemistry. 2009;48(8):1663-74. [Link] [DOI:10.1021/bi802324w]
5. Tørring T, Voigt NV, Nangreave J, Yan H, Gothelf KV. DNA origami: A quantum leap for self-assembly of complex structures. Chem Soc Rev. 2011;40(12):5636-46. [Link] [DOI:10.1039/c1cs15057j]
6. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297-302. [Link] [DOI:10.1038/nature04586]
7. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459(7243):73-6. [Link] [DOI:10.1038/nature07971]
8. Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009;9(6):2445-7. [Link] [DOI:10.1021/nl901165f]
9. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459(7245):414-8. [Link] [DOI:10.1038/nature08016]
10. Dietz H, Douglas SM, Shih WM. Folding DNA into twisted and curved nanoscale shapes. Science. 2009;325(5941):725-30. [Link] [DOI:10.1126/science.1174251]
11. Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, et al. Multilayer DNA origami packed on a square lattice. J Am Chem Soc. 2009;131(43):15903-8. [Link] [DOI:10.1021/ja906381y]
12. Liedl T, Högberg B, Tytell J, Ingber DE, Shih WM. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol. 2010;5(7):520-4. [Link] [DOI:10.1038/nnano.2010.107]
13. Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332(6027):342-6. [Link] [DOI:10.1126/science.1202998]
14. Holliday R. A mechanism for gene conversion in fungi. Genet Res. 1964;5(2):282-304. [Link] [DOI:10.1017/S0016672300001233]
15. Gill P, Ranjbar B, Saber R, Khajeh K, Mohammadian M. Biomolecular and structural analyses of cauliflower-like DNAs by ultraviolet, circular dichroism, and fluorescence spectroscopies in comparison with natural DNA. J Biomol Tech. 2011;22(2):60-6. [Link]
16. Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc. 2012;134(1):146-9. [Link] [DOI:10.1021/ja209861x]
17. Seeman NC. DNA in a material world. Nature. 2003;421(6921):427-31. [Link] [DOI:10.1038/nature01406]
18. Seeman NC. Nanomaterials based on DNA. Annu Rev Biochem. 2010;79:65-87. [Link] [DOI:10.1146/annurev-biochem-060308-102244]
19. Li M, Bhiladvala RB, Morrow TJ, Sioss JA, Lew KK, Redwing JM, et al. Bottom-up assembly of large-area nanowire resonator arrays. Nat Nanotechnol. 2008;3:88-92. [Link] [DOI:10.1038/nnano.2008.26]
20. Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, et al. DNA nanowire fabrication. Nanotechnology. 2006;17(1):14-25. [Link] [DOI:10.1088/0957-4484/17/1/R02]
21. Maeda Y, Tabata H, Kawai T. Tow-dimensional assembly of gold nanoparitcles with a DNA network template. Appl Phys Lett. 2001;79:1181. [Link] [DOI:10.1063/1.1396630]
22. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56-8. [Link] [DOI:10.1038/354056a0]
23. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603-5. [Link] [DOI:10.1038/363603a0]
24. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363:605-7. [Link] [DOI:10.1038/363605a0]
25. Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D. DNA-functionalized single-walled carbon nanotubes. Nanotechnology. 2002;13(5):601-4. [Link] [DOI:10.1088/0957-4484/13/5/311]
26. Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett. 2002;2(12):1413-7. [Link] [DOI:10.1021/nl025729f]
27. Weizmann Y, Chenoweth DM, Swager TM. Addressable terminally linked DNA-CNT nanowires. J Am Chem Soc. 2010;132(40):14009-11. [Link] [DOI:10.1021/ja106352y]
28. Williams KA, Veenhuizen PT, De La Torre BG, Eritja R, Dekker C. Nanotechnology: Carbon nanotubes with DNA recognition. Nature. 2002;420(6917):761. [Link] [DOI:10.1038/420761a]
29. Li S, He P, Dong J, Guo Z, Dai L. DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc. 2005;127(1):14-5. [Link] [DOI:10.1021/ja0446045]
30. Chen Y, Liu H, Ye T, Kim J, Mao C. DNA-directed assembly of single-wall carbon nanotubes. J Am Chem Soc. 2007;129(28):8696-7. [Link] [DOI:10.1021/ja072838t]
31. Li X, Peng Y, Ren J, Qu X. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Natl Acad Sci U S A. 2006;103(52):19658-63. [Link] [DOI:10.1073/pnas.0607245103]
32. Li X, Peng Y, Qu X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res. 2006;34(13):3670-6. [Link] [DOI:10.1093/nar/gkl513]
33. Zhao C, Ren J, Qu X. Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: More water molecules released. Chemistry. 2008;14(18):5435-9. [Link] [DOI:10.1002/chem.200800280]
34. Zhao C, Peng Y, Song Y, Ren J, Qu X. Self-assembly of single-stranded RNA on carbon nanotube: Polyadenylic acid to form a duplex structure. Small. 2008;4(5):656-61. [Link] [DOI:10.1002/smll.200701054]
35. Zhao C, Song Y, Ren J, Qu X. A DNA nanomachine induced by single-walled carbon nanotubes on gold surface. Biomaterials. 2009;30(9):1739-45. [Link] [DOI:10.1016/j.biomaterials.2008.12.034]
36. Bloomfield VA, Killman PA, Crothers DM, Tinoco I, Hearst JE, Wemmer DE, et al. Nucleic acids: Structure, properties, and functions. New Jersey: University Science Books; 2000. [Link]
37. Hughes ME, Brandin E, Golovchenko JA. Optical absorption of DNA-carbon nanotube structures. Nano Lett. 2007;7(5):1191-4. [Link] [DOI:10.1021/nl062906u]
38. Ranjbar B, Gill P. Circular dichroism techniques: Biomolecular and nanostructural analyses - a review. Chem Biol Drug Des. 2009;74(2):101-20. [Link] [DOI:10.1111/j.1747-0285.2009.00847.x]
39. Protasevich, I, Ranjbar B, Labachov V, Makarov A, Gilli R, Briand C, et al. Conformational and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry. 1997;36(8):2017-24. [Link] [DOI:10.1021/bi962538g]
40. Azizi A, Ranjbar B, Khajeh K, Ghodselahi T, Hoornam S, Mobasheri H, et al. Effects of trehalose and sorbitol on the activity and structure of Pseudomonas cepacia lipase: Spectroscopic insight. Int J Biol Macromol. 2011;49(4):652-6. [Link] [DOI:10.1016/j.ijbiomac.2011.06.025]
41. Cosa G, Focsaneanu KS, McLean JR, McNamee JP, Scaiano JC. Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution.Photochem. Photobiol. 2001,73 585. https://doi.org/10.1562/0031-8655(2001)073<0585:PPOFDD>2.0.CO;2 [Link] [DOI:10.1562/0031-8655(2001)0730585PPOFDD2.0.CO2]
42. Tolun G, Myers RS. A real-time DNase assay (ReDA) based on PicoGreen fluorescence. Nucleic Acids Res. 2003;31(18):e111. [Link] [DOI:10.1093/nar/gng111]
43. Murakami Y, Einarsson E, Edamura T, Maruyama S. Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys Rev Lett. 2005;94(8):087402. [Link] [DOI:10.1103/PhysRevLett.94.087402]
44. Dukovic G, Balaz M, Doak P, Berova ND, Zheng M, Mclean RS, et al. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J Am Chem Soc. 2006;128(28):9004-5. [Link] [DOI:10.1021/ja062095w]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.