Volume 8, Issue 2 (2017)                   JMBS 2017, 8(2): 25-41 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farmanbar N, Haddad-Mashadrizeh A, Hemmat J. An in-silico evaluation of the structure, function and homologous sequences of the enzymes involved in the production and accumulation of the lipids in oleaginous fungi. JMBS 2017; 8 (2) :25-41
URL: http://biot.modares.ac.ir/article-22-747-en.html
1- Department of Biology, Khorasan Razavi Science and Research Branch, Islamic Azad University, Neyshabur,
2- Cell and Molecular Research group. Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
3- Biotechnology Department-Iranian Research Organization for Science and Technology (IROST). Tehran, Iran.
Abstract:   (9232 Views)
Biodiesel as a clean fuel is renewable, biocompatible and free of polycyclic aromatic hydrocarbons that could be deriving from animals, plants, fungal, algae and bacteria resources. Among these resources, oleaginous fungi due to the high capability to synthesize and accumulation of triacylglycerol are the best source for biodiesel producer. So, in order to providing approaches for increase biodiesel production based on biotechnology, molecular investigation in these organisms could be promising approach, which have been attentioned in this study. In this regard, a precise survey on the related molecular mechanisms led to reveal Malic enzymes as the effective and critical proteins in lipids production and accumulation in oleaginous fungi. Structural characterization of the genes, led to reveal that they are different in the length and GC content as well as they are continuous in the sequence context. Moreover, structural characterization of the enzymes led to determine their localization in the cells, present the functional domains with capability of post-translational modifications in all of them, which are including MAO1_MF, Malic_M and malic. Homologous sequences survey of the enzymes led to introducing fungal species with possible capability for lipid production.structural modeling of the selective malic and malic like enzymes led to provided suitable models in structure and quality in function with binding affinity to malate. In general, the results of this study, while introducing suitable fungal species for securance of biomass, led to reveal effective enzymes with special features that could be useful in tracing the capable strains or transgenesis modification.
Full-Text [PDF 533 kb]   (2063 Downloads)    
Subject: Agricultural Biotechnology
Received: 2015/12/22 | Accepted: 2017/09/23 | Published: 2018/01/27

References
1. Li, X., Xu, H. &Wu, Q. (2007). Large‐scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnologyand bioengineering.98(4),764-771.
2. Spolaore, P., Joannis-Cassan, C., Duran ,E. &Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering.101(2),87-96.
3. Van Gerpen, J. (2004). Business management for biodiesel producers. Report from IowaState University for the National Renewable Energy Laboratory, NREL/SR-510-36242.
4. Demirbaş, A. (2003). Biodiesel fuels from vegetable oils via catalyticand non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy conversion and Management44(13),2093-2109.
5. Demirbas, A. (2004). Bioenergy, global warming, and environmental impacts. Energy Sources2,236-225.
6. Xiaohua, W. &Zhenmin, F. (2004). Biofuel use and its emission of noxious gases in rural China. Renewable and Sustainable Energy Reviews8(2),183-192.
7. Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy conversion and Management49(1),125-130.
8. Puppan, D. (2002). Environmental evaluation of biofuels. Social and Management Sciences10(1),95-116.
9. Demirbas, M. &Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: a globalperspective. Energy conversion and Management47(15),2371-2381
10. Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel processing technology86(10),1059-1070
11. Fuga, J. &Collier, V.(2013).Genetic and metabolic engineering of escherichiaCOLI for biofuel productionasan alternative fuel source.
12. Hill, J., Nelson, E., Tilman, D., Polasky, S. &Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences103(30),11206-11210
13. Searchinger, T., Heimlich, R., Houghton ,R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D. &Yu, T.-H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science319(5867),1238-1240.
14. Azocar, L., Ciudad, G., Heipieper, H. J. &Navia, R. (2010). Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol88(3),621-636.
15. Rossi, M., Amaretti, A., Raimondi, S. &Leonardi, A. (2011). Getting lipids for biodiesel production from oleaginous fungi. Feedstocks and Processing Technologies.
16. Henry, S. A., Kohlwein, S. D. &Carman, G. M. (2012). Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics190(2),317-349.
17. Li, Q., Du, W. &Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol.756-749(5)80
18. assonova, D. R., Hammond, E. G. &Beattie, S. E. (2008). Oxidative stability of polyunsaturated triacylglycerols encapsulated in oleaginous yeast. Journal of the American Oil Chemists' Society85(8),711-716.
19. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C .&Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res48(6),375-387.
20. Li, C. H., Cervantes, M., Springer, D. J., Boekhout, T., Ruiz-Vazquez, R. M., Torres-Martinez, S. R. ,Heitman, J. &Lee, S. C. (2011). Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog7(6),e1002086.
21. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie86(11),807-815
22. Wynn, J. P., bin Abdul Hamid, A. &Ratledge, C. (1999a). The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145(8),1911-1917
23. Wynn, J. P., bin Abdul Hamid, A. &Ratledge, C. (1999b). The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145 ( Pt 8): 1911-1917
24. Li, Y., Adams, I. P., Wynn, J. P. &Ratledge, C. (2005). Cloning and characterization of a gene encoding a malic enzyme involved in anaerobic growth in Mucor circinelloides. Mycol Res109(Pt 4),461-468.
25. Wynn, J. P., Kendrick, A. &Ratledge, C. (1997). Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids32(6),605-610
26. Zhang, Y., Adams, I. P. &Ratledge, C. (2007). Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153(7),2013-2025.
27. Felizardo, P., Neiva Correia, M. J., Raposo, I., Mendes, J. F., Berkemeier, R. &Bordado, J. M. (2006). Production of biodiesel from waste frying oils. Waste management26(5), 487-494
28. Kulkarni, M. G. &Dalai, A. K. (2006). Waste cooking oil an economical source for biodiesel: a review. Industrial & engineering chemistry research45(9), 2901-2913.
29. Ma, Y. (2006). Microbial oils and its research advance. Chinese Journal of Bioprocess Engineering4(4), 7-11.
30. Oelkers, P., Cromley, D., Padamsee, M., Billheimer, J. T. &Sturley, S. L. (2002). The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem277(11),8877-8881.
31. Sandager ,L., Gustavsson, M. H., Ståhl, U., Dahlqvist, A., Wiberg, E., Banas, A., Lenman, M., Ronne, H. &Stymne, S. (2002). Storage lipid synthesis is non-essential in yeast. Journal of Biological Chemistry277(8),6478-6482.
32. Yan, S., Tang, Z., Su, W. &Sun, W. (2005). Proteomic analysis of salt stress-responsive proteins in rice root. PROTEOMICS5(1), 235-244
33. Dixon, B. (1991). Glycosylation Enhances Stability. Nature biotechnology9(5),418-418
34. Larkin, A. &Imperiali, B. (2011). The expanding horizons of asparagine-linked glycosylation. Biochemistry50(21),4411-4426.
35. Coleman, D. E., Rao, G. J., Goldsmith, E., Cook, P. F. &Harris, B. G. (2002). Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 Å resolution. Biochemistry41(22),6928-6938
36. Vorapreeda, T., Thammarongtham, C., Cheevadhanarak, S. &Laoteng, K. (2013). Repertoire of malic enzymes in yeast and fungi: insight into their evolutionary functional and structural significance. Microbiology159(Pt 12),2548-2557.
37. Long, J. J., Wang, J.-L. &Berry, J. O. (1994). Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Journal of Biological Chemistry269(4), 2827-2833
38. Loeber, G., Infante, A., Maurer-Fogy, I., Krystek, E. &Dworkin, M. (1991). Human NAD (+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. Journal of Biological Chemistry266(5), 3016-3021
39. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D. &Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server.Springer
40. Kim, Y.-J., Shim, J.-S., Krishna, P. R., Kim, S.-Y., In, J.-G., Kim, M.-K. &Yang, D.-C. (2008).Isolation and characterization of a glutaredoxin gene from Panax ginseng CA Meyer. Plant molecular biology reporter26(4),335-349.
41. Van Der Giezen, M., Rechinger, K. B., Svendsen, I., Durand, R., Hirt, R. P., Fevre, M., Embley, T. M. &Prins, R. A. (1997). A mitochondrial‐like targeting signal on the hydrogenosomal malicenzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Molecular microbiology23(1),11-21
42. ang, W., Zhang, S.,Tan, H. &Zhao, Z. K. (2010). Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Molecular biotechnology45(2),121-128.
43. Odabasi, Z., Paetznick, V. L., Rodriguez, J. R., Chen, E. &Ostrosky-Zeichner, L. (2004). In vitro activity of anidulafungin against selected clinically important mold isolates. Antimicrobial agents and chemotherapy48(5), 1912-1915
44. Somashekar, D., Venkateshwaran, G., Sambaiah, K. &Lokesh, B. (2003). Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochemistry38(12), 1719-1724.
45. De, B., Chaudhury, S. &Bhattacharyya, D. (1999). Effect of nitrogen sources on γ-linolenic acid accumulation in Spirulina platensis. Journal of the American Oil Chemists' Society76(1), 153-156
46. Zago, E., Botton, V., Alberton, D., Córdova, J. s., Yamamoto, C. I., Cocco, L. C., Mitchell, D. A. &Krieger, N. (2014). Synthesis of ethylic esters for biodieselpurposes using lipases naturally immobilized in a fermented solid produced using Rhizopus microsporus. Energy & Fuels28(8), 5197-5203
47. Van Leeuwen, J., Khanal, S. K., Pometto, A. L., Rasmussen, M. L. &Mitra, D. (2013).Fungi cultivation on alcohol fermentation stillage for useful products and energy savings. Google Patents
48. Peixoto-Nogueira, S., Sandrim, V., Guimaraes, L., Jorge, J., Terenzi, H. &Polizeli, M. (2008). Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess and biosystems engineering31(4), 329-334.
49. Colovos, C. &Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein science: a publication of the Protein Society2(9),1511.
50. Xu, Y., Bhargava ,G., Wu, H., Loeber, G. &Tong, L. (1999). Crystal structure of human mitochondrial NAD (P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure7(8),877-889.
51. Chang, G.-G. &Tong, L. (2003). Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry42(44),12721-1273.3.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.