کلیدواژه‌ها = شبیه‌سازی دینامیک مولکولی
بیو انفورماتیک

بررسی پایداری مولکولی مهارکننده‌های نسل دوم EGFR در تعامل با پروتئین نوع وحشی: یک مطالعه شبیه‌سازی دینامیک مولکولی

دوره 16، شماره 3، تیر 1404، صفحه 19-29

https://doi.org/10.48311/biot.2025.27534

سید صادق محمدی موسوی؛ سید شهریار عرب

چکیده گیرنده فاکتور رشد اپیدرمی (EGFR) یکی از مهم‌ترین گیرنده‌های تیروزین کیناز است که نقش کلیدی در تنظیم فرایندهای سلولی و پیشرفت بسیاری از سرطان‌ها از جمله سرطان ریه دارد. در این مطالعه، تأثیر مهارکننده‌های نسل دوم EGFR شامل Afatinib، Dacomitinib و Neratinib و کاندیداهای دارویی Canertinib و Poziotinib بر پروتئین EGFR نوع وحشی با استفاده از شبیه‌سازی دینامیک مولکولی (MD) مورد بررسی قرار گرفت. برای این منظور، داده‌های ساختاری از پایگاه‌های معتبر جمع‌آوری و تحلیل شدند. مطالعات داکینگ مولکولی به شناسایی محل‌های اتصال داروها منجر گردید و شبیه‌سازی دینامیک مولکولی (MD) در شرایط فیزیولوژیکی، پایداری و تعاملات لیگاند-پروتئین را بررسی کرد. پارامترهای مختلفی نظیر RMSD، شعاع ژیراسیون (Rg)، SASA و پیوندهای هیدروژنی برای بررسی پایداری کمپلکس‌ها محاسبه شدند. نتایج تحلیل MMPBSA نشان داد که Neratinib با کمترین انرژی آزاد اتصال (ΔG)، تمایل اتصال بیشتری به EGFR دارد و در طول شبیه‌سازی پایداری بالاتری از خود نشان داده است. همچنین، تحلیل مؤلفه‌ی اصلی (PCA) نشان داد که کمپلکس EGFR-Neratinib دینامیک کمتری داشته و فضای فاز کمتری را اشغال می‌کند که نشان‌دهنده پایداری بیشتر این کمپلکس است.
این نتایج نشان می‌دهد که Neratinib می‌تواند به عنوان قوی‌ترین مهارکننده در مقایسه با سایر ترکیبات مورد بررسی، شناخته ‌شود و پتانسیل بالایی برای استفاده در درمان‌های ترکیبی علیه EGFR دارد.

نانو بیوتکنولوژی

ساخت و ارزیابی نانولیپوزوم حاوی اپی گالوکاتچین گالات: مطالعات آزمایشگاهی /محاسباتی

دوره 15، شماره 1، دی 1402، صفحه 67-86

محمد توحیدلو؛ صنم صادقی محمدی؛ محمد قربانی؛ زهرا واعظی؛ علیرضا فراست؛ مجید تقدیر؛ حسین نادری‌منش

چکیده ماتریکس متالوپروتئینازها یک خانواده اندوپپتیداز روی هستند که منجر به افزایش رفتار متاستازی تومورهای بدخیم انسانی می‌شوند. اپی‌گالوکاتچین گالات (EGCG) جزء اصلی پلی‌فنول‌های چای سبز و مهارکننده ماتریکس متالوپروتئینازها در درمان سرطان مورد استفاده قرار می‌گیرد. این مطالعه باهدف افزایش پایداری و بهینه‌سازی بارگذاری و رهایش EGCG در سیستم تحویل لیپوزومی به‌صورت آزمایشگاهی و محاسباتی انجام گردید. در این مطالعه نانولیپوزوم‌ها با روش بارگذاری غیرفعال و آب‌پوشانی لایه‌نازک تهیه و سپس اندازه، پتانسیل زتا، پایداری، میزان بارگذاری و منحنی رهایش دارو از نانولیپوزوم‌ها بررسی شد. سمیت سلولی نانولیپوزوم‌ها بر روی سه رده سلولی سرطان پستان با استفاده از آزمون زنده‌مانی مورد بررسی قرار گرفت. مطالعات محاسباتی باهدف بررسی فعل ‌و انفعالات EGCG-نانولیپوزوم و همچنین اثر آن بر روی ساختار نانولیپوزوم از طریق شبیه‌سازی دینامیک مولکولی دانه‌درشت ارزیابی شد. میانگین قطر نانولیپوزوم‌ها 9/6±6/73 نانومتر، بار سطحی آن‌ها 6/14- میلی‌ولت و میزان بارگذاری دارو 3/7±5/78 درصد به دست آمد. بارگذاری EGCG درون نانولیپوزوم باعث رهایش پیوسته و کامل دارو پس از 72 ساعت گردید و همچنین منجر به افزایش قدرت اثر و فعالیت دارو شد. نتایج مطالعات محاسباتی حاکی از قرارگیری دارو در نزدیک سطح لیپوزوم است. نتایج انرژی و تابع توزیع شعاعی نشان از پایداری لیپوزوم حاوی دارو است. همچنین اکثریت دارو در فاز لیپیدی توسط نانولیپوزوم احاطه‌شده که خود گویای درصد بالایی بارگذاری دارو در نانولیپوزوم و تأیید کارایی روش سنتز توسعه‌یافته است. طبق یافته‌های حاضر استفاده از حامل لیپوزومی برای حمل و رهایش EGCG راهکار مناسب جهت افزایش کارایی دارو است.

بیو انفورماتیک

مقایسه ساختار سه ایزوآنزیم گلوکوآمیلاز به‌منظور تعیین عوامل نشان‌دهنده پایداری گرمایی پروتئین‌ها با استفاده از شبیه‌سازی دینامیک مولکولی

دوره 11، شماره 3، تیر 1399، صفحه 23-36

کریم مهنام؛ آذین مشرف قهفرخی؛ حسینعلی رفیعی پور

چکیده گلوکوآمیلاز یک آنزیم مهم اقتصادی به دلیل توانایی‌اش درهیدرولیز نشاسته و پلیمرهای بتا دی‌گلوکز است. درک عوامل مؤثر در گرمادوستی یا سرمادوستی آنزیم گلوکوآمیلاز درتولیدایزوآنزیم‌هایی با مقاومت گرمایی یا سرمایی بالا ضروری است. دراین پژوهش، اثر دما روی تغییرات ساختاری هریک از ایزوآنزیم‌های گلوکوآمیلاز معتدل دوست، گرمادوست و سرمادوست بوسیله روش شبیه‌سازی دینامیک مولکولی بررسی شد. درکل ۲۴۰ نانوثانیه شبیه‌سازی برای سه ایزوآنزیم گلوکوآمیلاز در چهار دمای ۳۰۰، ۳۵۰، ۴۰۰ و ۴۵۰ کلوین انجام گرفت. تغییرات پارامترهای ساختاری در هرسه ایزوآنزیم مقایسه شد و مشخص گردید که از بین عوامل قابل محاسبه در شبیه‌سازی دینامیک مولکولی، انرژی الکتروستاتیک پروتئین با آب، انرژی واندروالسی بین پروتئین و آب، انرژی آزاد حلالیت(∆Gsolvation)، پارامترناپایداری، سطح دردسترس حلال غیرقطبی و سطح دردسترس کل بهترو دقیق‌تر می‌توانند برای پیشگویی تغییرات پایداری گرمایی یک پروتئین در اثر افزایش دما به‌وسیله شبیه‌سازی دینامیک مولکولی استفاده شوند.

بیوتکنولوژی کشاورزی

بررسی تاثیر کلسترول روی شکل‌گیری و پایداری لیپوزوم‌ها با استفاده از شبیه‌سازی دینامیک مولکولی دانه‌درشت

دوره 10، شماره 2، فروردین 1398، صفحه 241-246

جلیل پرچکانی‌چوزکی؛ مجید تقدیر

چکیده لیپوزوم‌ها یا وزیکول‌های زیستی از کلسترول، فسفولیپید و آب تشکیل می‌شوند. همچنین گاهی اوقات سایر مولکول‌های زیستی و غیرزیستی در ساختار لیپوزوم به کار برده می‌شوند. مفهوم پایداری لیپوزومی، در بحث درمان بیماری‌ها و دارورسانی، بسیار حیاتی و مهم است و می‌تواند متاثر از ترکیب فسفولیپیدی غشای لیپوزوم باشد. علاوه بر این حضور و عدم حضور کلسترول نیز می‌تواند پایداری لیپوزومی را تحت تاثیر قرار دهد.همچنین شکل‌گیری لیپوزوم‌ها نیز تحت تاثیر حضور یا عدم حضور کلسترول است. در این تحقیق ما درصدد هستیم تا اثر حضور و عدم حضور کلسترول را روی پایداری و شکل‌گیری لیپوزومی بررسی کنیم، که به این منظور از روش شبیه‌سازی دینامیک مولکولی استفاده می‌شود. لیپوزوم‌هایی که مورد شبیه‌سازی قرار گرفتند شامل دو نوع لیپوزوم، لیپوزوم دوناگزومه (نوع اول) و لیپوزوم دوناگزومه فاقد کلسترول (نوع دوم) هستند. آنالیزهای شکل‌گیری شامل تابع توزیع شعاعی و ناحیه سطح در دسترس حلال نشان دادند که هر کدام از لیپوزوم‌ها ساختارهای نانودیسکی کروی ایجاد کرده‌اند. لیپوزوم نوع اول یک ساختار نانودیسکی و لیپوزوم نوع دوم دو ساختار نانودیسکی ایجاد کرد. همچنین آنالیزهای انرژی شامل انرژی کل، انرژی میان‌کنش‌های واندروالس و الکترواستاتیک نشان دادند که لیپوزوم نوع اول پایدارتر است. دلیل این پایداری حضور مولکول کلسترول در ساختار این لیپوزوم است که توانایی ایجاد پیوند هیدروژنی با لیپیدهای مجاور دارد و باعث افزایش پایداری می‌شود. به‌علاوه میان‌کنش‌های آب‌گریز بین کلسترول و فسفولیپیدها و همچنین توزیع و جهت‌گیری مناسب این قسمت‌ها سهم عمده‌ای در پایداری ساختار ایفا می‌کند.

بیوتکنولوژی کشاورزی

تحلیل in-silico فضای شیمیایی تاثیرگذار در ایجاد ‌برهم‌کنش‌های مشتقات دیستامایسین A و مولکول DNA

دوره 10، شماره 1، دی 1397، صفحه 69-75

بهنام راستی؛ سیده‌شیرین شاهنگیان

چکیده اﻫﺪاف: هدف قراردادن DNA در راس درمان‌های ضدسرطان قرار دارد. بنابراین داروهای متصل‌شونده به DNA و برهم‌کنش آنها با DNA بسیار مورد توجه محققان قرار گرفته‌اند. از آنجایی که متصل‌شونده‌ها به شیار کوچک DNA (MGBs) به‌عنوان ترکیبات ضدتوموری موثر و کارآمدی مطرح هستند، درک جزییات برهم‌کنش آنها با DNA ضروری به نظر می‌‍رسد. تاکنون مکانیزم عمل بسیاری از MGBها در سطح مولکولی مشخص نشده است.
ﻣﻮاد و روش‌ﻫﺎ: در این مطالعه با انجام شبیه‌سازی‌های داکینگ و دینامیک مولکولی توسط نرم‌افزارهای AutoDock Vina و NAMD، نحوه اتصال سه مشتق متفاوت از دیستامایسین A (تالیموستاین، PNU151807 و بروستالیسین) با DNA بررسی و انرژی برهم‌کنش و الگوی اتصال آنها با یکدیگر مقایسه شد.
یﺎﻓﺘﻪ‌ﻫﺎ: هر سه دارو طی شبیه‌سازی به‌طور پایداری به DNA متصل شده و تغییرات ساختاری کمی را در مولکول DNA القا کرده‌اند. نتایج حاصل از تحلیل LigPlot نیز هم‌خوانی بسیار بالایی را با نتایج مربوط به تحلیل انرژی‌های برهم‌کنش توسط NAMD نشان داد و مشخص شد در کمپلکس‌های مربوط به هر سه ترکیب با DNA، نوکلئوتیدهای A و T بیشترین نقش را در ایجاد برهم‌کنش‌ها دارند.
ﻧﺘﯿﺠﻪﮔﯿﺮی: در کمپلکس‌های مربوط به هر سه ترکیب با DNA، نوکلئوتیدهای A و T بیشترین نقش را در ایجاد برهم‌کنش‌ها دارند که با سایر مطالعات و گزارش‌های موجود در مورد MGBها مطابقت دارد. مطالعه حاضر نشان داد که بروستالیسین در مقایسه با دو داروی هم‌خانواده خود که همگی از دیستامایسین A مشتق شده‌اند، پتانسیل بیشتری در برقراری برهمکنش‌های قوی‌تر با مولکول DNA‌ داشته و می‌تواند به‌عنوان کاندیدای موفق‌تری در درمان های ضدسرطان مطرح شود

بیوتکنولوژی کشاورزی

مطالعه شبیه‌سازی دینامیک مولکولی تاثیرات غلظت یونی حلال محیطی در اتصال پپتید MUC1–G و آپتامر anti-MUC1

دوره 10، شماره 1، دی 1397، صفحه 85-92

مریم منصفی؛ حمید عرفان‌نیا؛ رحیم قدری

چکیده اهداف: مطالعه برهم‌کنش‌های آنالیت- زیست‌پذیرنده‌ در سطح مولکولی در راندمان طراحی زیست‌حسگرها نقش اساسی دارد. زیست‌حسگرهایی که از آپتامرها به‌عنوان پذیرنده زیستی استفاده می‌کنند، بسیار کارآمد بوده و دارای اختصاصیت بالا و قابلیت استفاده مجدد هستند. آپتاحسگرها می‌توانند در شرایط مختلف داخل بدن یا در شرایط آزمایشگاهی استفاده شوند. هدف از تحقیق حاضر، بررسی تاثیرات غلظت یونی حلال محیطی در اتصال پپتید MUC۱-G و آپتامر anti-MUC۱ است.
مواد و روش‌ها: روش شبیه‌سازی دینامیک مولکولی برای بررسی تغییر برهم‌کنش‌های مولکولی به‌علت تغییرات انتخابی در شرایط حلال، به کار گرفته شده است. نتایج می‌تواند برای منعکس‌کردن محیط‌های مختلف در آپتاحسگری که از آپتامر anti-MUC۱ S۲.۲ به‌عنوان زیست‌پذیرنده و از پپتید MUC۱–G به‌عنوان زیست‌شناساگر استفاده می‌کند، به کار گرفته شوند.
یافته‌ها: براساس انرژی‌های اتصال محاسبه‌شده، آپتامر anti-MUC۱ S۲.۲ بالاترین تمایل به پپتید MUC۱–G را در محیط ۰/۱۰مولار سدیم‌کلرید در میان غلظت‌های مطالعه‌شده سدیم‌کلرید نشان داده و اسیدآمینه آرژنین در اتصال پپتید-آپتامر نقش کلیدی ایفا می‌نماید.
نتیجه‌گیری: نتایج شبیه‌سازی‌های دینامیک مولکولی نشان داد که افزایش غلظت حلال سدیم‌کلرید در محیط باعث کاهش انرژی‌های اتصال می شود و بنابراین تمایل اتصال آپتامر anti-MUC۱ به پپتید MUC۱–G با افزایش غلظت کمتر می‌شود. دیدگاه به‌دست‌آمده از مدل‌سازی حاضر انتخاب‌پذیری و حساسیت نسبت به شرایط حلال در مورد MUC۱ را نشان می‌دهد که در توسعه زیست‌حسگرها باید ملاحظه شود.

مطالعه تغییرات ساختاری پروتئین باکتریوردوپسین در اثر جذب امواج مایکروویو با استفاده از شبیه‌سازی دینامیک مولکولی

دوره 7، شماره 1، فروردین 1395، صفحه 1-10

فائزه متقی طلب؛ سید شهریار عرب؛ جعفر محمدیان

چکیده باکتریوردوپسین پروتئینی غشایی است که در هالوباکتریوم سالیناروم به عنوان پمپ پروتون وابسته به نور عمل می‌کند. این پروتئین شامل هفت زیرواحد مارپیچ آلفا (مارپیچ‌های A تاG )، یک صفحه بتا و یک کروموفور رتینال است. مطالعات نشان می‌دهد که پروتئین باکتریوردوپسین دارای خاصیت جذب امواج مایکروویو می‌باشد. یکی از رایج‌ترین و اصولی‌ترین روش‌های مطالعه ماکرومولکول‌های زیستی شبیه‌سازی دینامیک مولکولی است. با استفاده از این روش می‎توان تغییرات و دینامیک ساختاری ماکرومولکول‌های زیستی و کمپلکس آن‌ها را مطالعه کرد. در پروژه حاضر، از مدلسازی‌ و شبیه‌سازی دینامیک مولکولی استفاده شده است. پس از مرحله تعادل و جهت بدست آوردن ساختارهای یکدست تر در مرحله تولید، شبیه‌سازی‌ به مدت 15 نانوثانیه انجام شد، سپس به منظور بررسی مناطق مؤثر در جذب امواج مایکروویو شبیه‌سازی دینامیک مولکولی همراه با اعمال میدان الکتریکی به مدت زمان 786 پیکوثانیه که برابر با مدت زمان تناوب یک موج سینوسی در طیف رادار می‌باشد، روی کل ساختار پروتئین انجام شد. در نهایت، تغییرات کنفورماسیونی حاصل مورد بررسی قرار گرفت تا مناطق موثر در جذب امواج تعیین شود. مطالعه انجام گرفته نشان می‌دهد که امواج مایکروویو در فرکانس 8 گیگاهرتز و در بازه زمانی ذکر شده نمی‌تواند تغییرات ساختاری گسترده‌ای را در پروتئین ایجاد کند. از سوی دیگر تغییرات ساختاری برگشت‌پذیری در مناطق صفحه بتا و مارپیچ‌های D ، C و B تحت تأثیر میدان مشاهده گردید.