تولید زیست نانوذرات طلا با استفاده از بакتری

Streptomyces sp. ERI-3

ندا فرخzn 1. مجتبی صلوتی 2. لیلا دولت‌نژاد 3

- کارشناسی ارشد، گروه میکروبیولوژی، دانشکده علوم طبیعی و پزشکی، دانشگاه آزاد اسلامی، واحد زنجان، زنجان، ایران
- دانشیار، گروه میکروبیولوژی، دانشکده علوم طبیعی و پزشکی، دانشگاه آزاد اسلامی، واحد زنجان، زنجان، ایران
- کارشناسی ارشد، گروه شیمی، دانشکده علوم طبیعی و پزشکی، دانشگاه آزاد اسلامی، واحد زنجان، زنجان، ایران

زرنجان، کد پستی ۴۵۱۶۸۸۱۴۵
saloutim@yahoo.com

(دریافت مقاله: ۸ ژوئیه ۱۳۹۰، پذیرش: ۱۷ ژوئیه ۱۳۹۰)

چکیده - ساخت نانوذرات طلا به روش‌های شیمیایی، به دلیل آلودگی ناشی از مواد شیمیایی پیش‌ساز و تولید محصولات جانبی خطرناک، کاربرد پرخشنگی نانوذرات را به‌مشکل مواجه می‌سازد. روش‌های فیزیکی سنتز نانوذرات نیز کمبوده و پرهزینه‌اند. بنابراین، نیاز فراوان‌های جهت ارائه روش‌های مناسبی که قبلاً، غیرسمی و برای بی‌خطری محیط زیست وجود دارد و این نقش روش‌های زیستی سنتز نانوذرات را پرورده‌اند. در بررسی حاضر، روشن‌سازه و Streptomyces sp. ERI-3 به روش‌های شیمیایی از معدن مرکز سونووکس اثر یافته می‌شود. بدنین منظور بیماری ۳ اراءت خود را در ده هزار نانوذرات طلا با استفاده از سویه باتکری‌پایی از یک میکروسکوپ کنفدراسیون (TEM) تولید (۴۰۰ نانومتر) بر روی شیکر می‌پذیرد. هم‌اکنون شکافته و استخوان‌سازی UV-vis پرای ایجاد ویژگی‌های TEM خاص نانوذرات طلا و UV-vis اختصاصی نانوذرات طلا استفاده می‌شود. ژنتیکی به طول موج نانوذرات حاصل XRD نشان داده‌اند. آنتی‌بیوتیک‌ها و سنتز نانوذرات طلا برای دو صورت متمایل به سطح سلول و خارج UV-vis می‌باشد و به شکال کروی را نشان می‌دادند.

کلیدواژگان: نانوذرات طلا، تولید زیستی، Streptomyces sp. ERI-3

Downloaded from biot.modares.ac.ir at 8:14 IRST on Sunday January 17th 2021
Table 1: Isolation of the 30 most inhibitory strains from the selected bacteria.

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Inhibitory Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>2</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>1</td>
</tr>
<tr>
<td>Shewanella algae</td>
<td>0.5</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0.1</td>
</tr>
<tr>
<td>Thermomonospora sp.</td>
<td>0.05</td>
</tr>
<tr>
<td>Lactobacillus sp.</td>
<td>0.03</td>
</tr>
<tr>
<td>Rhodopseudomonas sp.</td>
<td>0.02</td>
</tr>
<tr>
<td>Rhodococcus sp.</td>
<td>0.01</td>
</tr>
<tr>
<td>Rhodopseudomonas sp.</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Note: The strains were isolated from the selected bacteria using a serial dilution method and tested for their inhibitory effects on the growth of S. aureus.
2-2-1 جذور نباتی استرتوپاپس
نمونه‌برداری از معدن سرب‌ونهاره، واقع در شمال غرب ایران، صورت گرفت. جهت جذور‌برداری جنس استرتوپاپس از نمونه‌های خاک معدن، رقیق‌های اولیه و تانوه نیز شد. سپس ۵۰ میکرولیتر از این نمونه‌ها در محیط کشت افتراقی استرتوپاپس (استارکتین آگار) محتوی ۱۰ گرم نسافت، ۳ گرم کازنین، ۲/۰ گرم کربنات کلسیم، ۰/۱ گرم سولفات آهن، ۲ گرم دی پتاسیم هیدروژن سافت، ۲ گرم نیترات نیاسیم، ۰/۰ گرم سولفات نیتریم، گرم کلسیم سدیم و ۱۵ گرم آکوار در یک لیر اب معطر استریل در ۲۰ میلی‌لیتر مغز (۱۸۸ ئی‌‌پی‌‌ه) به صورت ۷ pH کشت شد. بعد از ژاوان روز گرم‌مانگاژنی در دمای ۲۸ درجه سانتی‌گراد، با تکراری استرتوپاپس براساس ویزی‌های مورفولوژیکی و بیوشیمیایی جذورات شدند.[۱۸]

3-2-2 شناسایی مولکولی ایزوئل DNA
ژنوم ایزوئل موردنظر بدنی ترتیب جذورات شد؛ بال acum-PCR DNA Zن ۱۶S RNA (تا) و
برای‌های ۲۷f (۵۱ AGT TTG ATC CTG GCT) ۵۱ ACG GCT ACC TTG (CAG ۳۱) طی روش و آکشن جنگ‌های (TTA CGA CTT ۵۱)
پلیمراز (PCR) کلکت پیف. شرایط برای چرخه حرارتی
بدین ترتیب بود؛ تخلیه DNA و
۱۶S RNA با استفاده از آب معطر دوپینه به ته و pH محدود ۵۰۰ میلی‌لیتر مولار در ۱۰۰ میلی‌لیتر از محلول NaOH به آن اضافه شد. سپس نمونه‌ها در گرم‌مانگاژنی HAuCl۴ محیط یک در دمای ۲۸ درجه سانتی‌گراد و با سرعت ۲۰۰ دور در دقیقه به مدت ۴۸ ساعت، گرم‌مانگاژنی‌کاپری شدند.

3. Shaker-incubator
شناخت‌های نانوذرات طلا
در مرحله اول، تولید نانوذرات طلا با مشاهده تغییر رنگ مخلوط سوسپسیون سولوئ و محلول با
مشخص شد. سانتریفیوژ نمونه‌ها با سرعت ۱۵۰۰۰×g
به‌مدت ۱۵ دقیقه در دمای ۴ درجه سانتی‌گراد,
به‌منظور تعیین طیف جذبی محلول روبی حاصل از
سانتریفیوژ، با استفاده از اسپکتروفوتومتر
UV-vis (Shimadzu, UV Pharma spec 1700)
به‌کار گرفته شد.

اثار آنالیز XRD نمونه‌های خشک شده در دمای ۵۰ درجه
سانتی‌گراد به‌مدت ۲۴ ساعت بر با استفاده از دستگاه
براش اشعه ایکس (Phillips 1800) انجام شد. بعد از
آماده‌سازی نمونه‌ها [۱۹]، نانوذرات سنتز‌شده
با میکروسکوپ الکترونی غیره (Phillips EM 208S)
از نظر مکان تولید، شکل و اندیشه نانوذرات
بررسی شدند.

۳- یافته‌ها
کلنی‌های خالص به‌دست آمده از رشد استریتومیس
جاداسازی شده از معده ممس سونتوگن بر اساس
ویژگی‌های لورفولوژیکی، بوشیمیایی و مولکولی به عناوان
شناخت‌های ۱۶.۱۴ (Phillips EM). توجه
زیستی به‌دست آمده از رشد این ایزوله‌های به‌ایمی
به نانوذرات طلا بود که با این‌که تغییر رنگ
مخلوط واکنش از زرد–سفید به قرمز–ارگیوئایی شناخت‌های
شد (شکل ۱). آنالیز نمونه‌ها با اسپکتروفوتومتر
UV-vis اختصاصی برای نانوذرات طلا تولید و ماهیت
پیک جذبی را در طول موج ۵۴۰ نانومتر (پیک
۲-۵- H}_{2} AuCl_{4}
شناخت‌های نانوذرات طلا توسط ابولا جاداسازی شده بود
(شکل ۱ ب).
پژوهش نانوذرات طلا از طریق سیستم‌های زیستی، به‌ویژه باکتریایی، از بهترین روش‌های تولیدی زیست‌سازگار به‌شمار می‌آید [9]. در تحقیق حاضر، سعی شده است، با بهره‌گیری از باکتری‌های استرنوکوبیزا جدیدی، از مدل سی سونوکوپ آفریقایی، یک سویه بروی برای تولید نانوذرات طلا، که دارای کاربردی‌های فراوان در زمینه‌های مختلف مخصوصاً بخش پزشکی هستند، عرضه شود. در این بروز، مخلوط توده زیستی باکتریایی و مخلوط طلا در ابتدا دارای رنگ سفید مایل به ذرات زرد بوده اما با سه‌شنبه‌جمعه مدت زمان ۴۸ ساعت رنگ مخمل و اکتشش به قمر ارغوانی تغییر ییدا کرد. نتایج تحقیقات مندال و همکارانش در سال ۲۰۰۹ نشان داد که توده زیستی باکتری سیستم‌سینتیز، بعد از مواجهه با HAuCl₃ محلول با مقدار ۸۸ ساعت به‌طور کلی رنگ طلا را به نانوذرات طلا احجام کند و سپس آنها را در دیواره سیستم حیوان انسان‌سازی سازد [9]. سرعت تولید نانوذرات طلا توسط این باکتری کره‌گیره قابل مقایسه با باکتری مورد بررسی در تحقیق حاضر است، اما باکتری جهت تولید خارج سلولی Streptomyces sp. ERI-3 نانوذرات از این نظر ارجح است. در تحقیقات دیگری نیز گزارش شده است که جنس باکتریایی مانند شوولانگ آگاه، سیستم‌های درون‌پوشش و روش‌های سیستم‌های دیگر استفاده را تولید خارج سلولی نانوذرات طلا در فناحی توده زیستی دارا با محلول HAuCl₃, اما سرعت تولید نانوذرات در این باکتری کمتر از باکتری مورد مطالعه ماست [13,18]. در تحقیق دیگری نیز، توسط احمد و همکارانش، باکتری‌های استرنوکوبیزایی اکتشف می‌گردد و تولید نانوذرات نیز به‌طور معناداری از سایر نانوذرات گزارش گردیده، از رنگ سفید مایل به طلا.

4- بحث

تصاویر به‌دست‌آمده از میکروسکوپ الکترونی نشان می‌دهد که سیستم‌های نانوذرات طلا، به‌صورت خارج سلولی و متصل به سطح سلول، با ابعاد ۱۰۰-۲۰۰ نانومتر و اشکال کروی را نشان داد (شکل ۳الف و ب).
‌۵- مراجع


