عملکرد جلبک اسپیروژیر در جذب زیستی فلزات سنگین کروم، مس و روی از محیط‌های آبی

نویسندگان

گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

چکیده
اهداف: آلودگی ناشی از فلزات سنگین، یک مشکل زیست‌محیطی نگران‌کننده در سراسر جهان است. هدف این پژوهش، بررسی عملکرد جلبک اسپیروژیر در جذب زیستی فلزات سنگین کروم، مس و روی از محیط‌های آبی بود.

مواد و روش‌ها: پژوهش تجربی حاضر روی جلبک اسپیروژیر از قنات‌های شهرستان بیرجند اجرا شد. طرح آزمایش به‌صورت یک عامل در زمان در نظر گرفته شد. تاثیر پارامترهای pH، مقدار جاذب، زمان تماس و غلظت اولیه فلزات کروم، مس و روی بر میزان جذب توسط جلبک اسپیروژیر و مدل‌های سینتیک و ایزوترم‌های جذب لانگمویر، فروندلیچ و تمکین مورد بررسی قرار گرفت.

یافته‌ها: بیشترین درصد حذف کروم (۸۴/۴۸%) و مس (۷۶/۸۵
%) به‌ترتیب در pHهای ۳ و ۵، با غلظت اولیه ۲۰میلی‌گرم در لیتر کروم و مس، در مدت‌زمان ۱۵ و ۴۰دقیقه و مقدار ۳گرم در لیتر زیست‌توده جلبک اسپیروژیر رخ داد. همچنین بالاترین راندمان حذف روی (%۸۹/۲۶) در pH برابر با ۵، با غلظت اولیه ۲۰میلی‌گرم در لیتر و مقدار جاذب ۲گرم در لیتر طی مدت‌زمان ۲۰دقیقه به دست آمد. جذب کروم، مس و روی از مدل لانگمویر با مقادیر ضرایب همبستگی به‌ترتیب ۰/۹۹۸۳، ۰/۹۹۲۴ و ۰/۹۹۷۷ پیروی کردند. طبق نتایج سینتیک، جذب کروم، مس و روی از مدل شبه درجه دوم به‌ترتیب با مقدار ضرایب ۰/۹۹۲۲، ۰/۹۶۶۷ و ۰/۹۹۵۳ تبعیت کردند.

نتیجه‌گیری: جلبک اسپیروژیر، توانایی بالایی در حذف عناصر کروم، مس و روی از محیط‌های آبی دارد.

کلیدواژه‌ها

موضوعات


Gupta VK, Rastogi A. Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater. 2008;153(1-2):759-66. [Link] [DOI:10.1016/j.jhazmat.2007.09.021]
Fagundes-Klen MR, Veit MT, Borba CE, Bergamasco R, De Lima Vaz, LG, Da Silva EA. Copper biosorption by biomass of marine alga: Study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column. Water Air Soil Pollut. 2010;213(1-4):15-26. [Link] [DOI:10.1007/s11270-010-0363-7]
Ajjabi LC, Chouba L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manag. 2009;90(11):3485-9. [Link] [DOI:10.1016/j.jenvman.2009.06.001]
Li H, Bi Sh, Liu L, Dong W, Wang X. Separation and accumulation of Cu (II), Zn (II) and Cr (VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine. Desalination. 2011;278(1-3):397-404. [Link] [DOI:10.1016/j.desal.2011.05.056]
Pan R, Cao L, Zhang R. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J Hazard Mater. 2009;171(1-3):761-6. [Link] [DOI:10.1016/j.jhazmat.2009.06.080]
Şahan T, Ceylan H, Şahiner N, Aktaş N. Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresour Technol. 2010;101(12):4520-6. [Link] [DOI:10.1016/j.biortech.2010.01.105]
Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98(12):2243-57. [Link] [DOI:10.1016/j.biortech.2005.12.006]
Xuejiang W, Ling C, Siqing X, Jianfu Z, Chovelon JM, Renault NJ. Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Miner Eng. 2006;19(9):968-71. [Link] [DOI:10.1016/j.mineng.2005.09.042]
Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R. Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol. 2001;35(21):4283-8. [Link] [DOI:10.1021/es010063x]
Rajfur M, Klos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci Health Part A. 2011;46(12):1401-8. [Link] [DOI:10.1080/10934529.2011.606717]
Feng D, Aldrich C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy. 2004;73(1-2):1-10. [Link] [DOI:10.1016/S0304-386X(03)00138-5]
Liu Y, Cao Q, Luo F, Chen J. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater. 2009;163(2-3):931-8. [Link] [DOI:10.1016/j.jhazmat.2008.07.046]
Lee YC, Chang SP. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol. 2011;102(9):5297-304. [Link] [DOI:10.1016/j.biortech.2010.12.103]
Langmuir I. The constitution and fundamental properties of solids and liquids part I solids. J Am Chem Soc. 1916;38(11):2221-95. [Link] [DOI:10.1021/ja02268a002]
Freundlich HMF. Over the adsorption in solution. J Phys Chem.1906;57:385-471. [Link]
Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim. USSR.1940;12(1):217-22. [Link]
Lu J, Li Y, Yan X, Shi B, Wang D, Tang H. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids Surf A Physicochem Eng Asp. 2009;347(1-3):90-6. [Link] [DOI:10.1016/j.colsurfa.2008.12.032]
Tunali S, Akar T, Safa Özcan A, Kiran I, Özcan A. Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol. 2006;47(3):105-12. [Link] [DOI:10.1016/j.seppur.2005.06.009]
Çetinkaya Dönmez G, Aksu Z, Öztürk A, Kutsal T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999;34(9):885-92. [Link] [DOI:10.1016/S0032-9592(99)00005-9]
Alowitz MJ, Scherer MM. Kinetics of nitrate, nitrite and Cr (VI) reduction by iron metal. Environ Sci Technol. 2002;36(3):299-306. [Link] [DOI:10.1021/es011000h]
Gupta VK, Rastogi A. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater. 2009;163(1):396-402. [Link] [DOI:10.1016/j.jhazmat.2008.06.104]
Chen S, Yue Q, Gao B, Xu X. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr (VI) using modified wheat residue. J Colloid Interface Sci. 2010;349(1):256-64. [Link] [DOI:10.1016/j.jcis.2010.05.057]
Sari A, Tuzen M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2008;160(2-3):349-55. [Link] [DOI:10.1016/j.jhazmat.2008.03.005]
Jung Y, Choi J, Lee W. Spectroscopic investtigation of magnetite surface for the reduction of hexavalent chromium. Chemosphere. 2007;68(10):1968-75. [Link] [DOI:10.1016/j.chemosphere.2007.02.028]
Romera E, González F, Ballester A, Blázquez ML, Mu-oz JA. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol. 2007;98(17):3344-53. [Link] [DOI:10.1016/j.biortech.2006.09.026]
Tran HT, Vu ND, Matsukawa M, Okajima M, Kaneko T, Ohki K, et al. Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. J Environ Chem Eng. 2016;4(2):2529-35. [Link] [DOI:10.1016/j.jece.2016.04.038]
Sheng PX, Ting YP, Chen JP, Hong L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci. 2004;275(1):131-41. [Link] [DOI:10.1016/j.jcis.2004.01.036]
Karthikeyan S, Balasubramanian R, Iyer CS. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions. Bioresour Technol. 2007;98(2):452-5. [Link] [DOI:10.1016/j.biortech.2006.01.010]
Apiratikul R, Pavasant P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol. 2008;99(8):2766-77. [Link] [DOI:10.1016/j.biortech.2007.06.036]