Occurrence of various types of incidents such as road accidents, damage and injuries during sports activities as well as some diseases can lead to the destruction and resorption of osteochondral tissue and cause many problems in health and quality of life of the patient, therefore control and repairing these defects is one of the major challenges in the field of regenerative medicine. Since osteochondral defects involve damage to both articular cartilage and underlying subchondral bone, the demands of bone, cartilage, and bone cartilage interface should be taken into account for repair. Current clinical therapies are more palliative and less therapeutic. Hence, due to the limitations of existing treatment methods over the past decade, the use of tissue engineering as an effective and low-risk treatment method for the treatment of many diseases, especially bone-cartilage lesions has been introduced. In this approach, some of the limitations of previous methods could be overcome by transplanting osteochondral composite tissues, which have been obtained by combining patient's own cells with three-dimensional porous biomaterials of predetermined shape and size. So far, various strategies for scaffold fabrication have been used to repair osteochondral defects, including single-phase, multilayer, and graded structures. In this study, some common strategies in tissue engineering as well as the challenges ahead are briefly discussed.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |