مروری بر روش های تشخیصی مبتنی بر نانوذرات طلا

نوع مقاله : مروری تحلیلی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده
نانوذرات کروی شکل طلا با خواص منحصر بفرد خود دارای قابلیت زیادی جهت تشخیص انواع مختلف آنالیت­ها بوده و امروزه استفاده از نانو ذرات طلا کاربردهای گسترده­ای در زمینه پزشکی و زیست فناوری از جمله تشخیص پاتوژن­های آلوده کننده آب، هوا و مواد غذایی داشته و جایگزین مناسبی برای روش­های شیمیایی و فیزیکی تلقی می­گردد. فناوری­های نوین در طراحی حسگر زیستی مبتنی بر نانوذرات طلا، قابلیت شناسایی ترکیبات زیستی را به طور دقیق و سریع فراهم می­سازد. یکی از این فناوری­ها، حسگرتشخیصی بر پایه رزونانس پلاسمون سطحی (SPR)[1] است که بر اساس خواص نوری خود قادر به اندازه­گیری بسیار حساس و اختصاصی میان­کنش­های ملکول­های زیستی، بدون تأخیر زمانی می­باشند. این فناوری می­تواند در زمان کوتاه و با حساسیت مناسب ویژگی­های میانکش مواد زیستی (الیگونوکلئوتید، پروتئین، باکتری) بر روی سطح، از جمله سرعت واکنش، تمایل و غلظت میانکش­های سطحی را کمی­سازی کند. در این مقاله مروری تلاش شده است ضمن بررسی خصوصیات و ویژگی­های پلاسمون سطحی نانوذرات طلا، کاربردهای تشخیصی ساده نانوذرات طلا بر اساس روش پلاسمون سطحی موضعی(LSPR) و تشخیص در زیست پزشکی، بررسی و تشریح گردد.


[1] Surface Plasmone Resonance

کلیدواژه‌ها

موضوعات


[1] Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A. (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics.2, 107-18.
[2] Amendola, V., Pilot, R., Frasconi, M., Maragò, O.M., Iatì, M.A. (2017) Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter.29(20), 203002.
[3] Yeh, Y-C., Creran, B., Rotello, V.M. (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale.4(6), 1871-80.
[4] Daraee, H., Eatemadi, A., Abbasi, E., Fekri Aval, S., Kouhi, M., Akbarzadeh, A. (2016) Application of gold nanoparticles in biomedical and drug delivery. Artificial cells, nanomedicine, and biotechnology.44(1), 410-22.
[5] Baptista, P., Pereira, E., Eaton, P., Doria, G., Miranda, A., Gomes, I. (2008) Gold nanoparticles for the development of clinical diagnosis methods. Analytical and bioanalytical chemistry.391, 943-50.
[6] Pines, D., Bohm, D. (1952) A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Physical Review.85(2), 338.
[7] Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications. p. 668-77.
[8] Willets, K.A., Van Duyne, R.P. (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem.58, 267-97.
[9] Motl, N., Smith, A., DeSantis, C., Skrabalak, S. (2014) Engineering plasmonic metal colloids through composition and structural design. Chemical Society Reviews.43(11), 3823-34.
[10] Cheng, H-P., Chuang, H-S. (2019) Rapid and sensitive nano-immunosensors for botulinum. Acs Sensors.4(7), 1754-60.
[11] Balbinot, S., Srivastav, A.M., Vidic, J., Abdulhalim, I., Manzano, M. (2021) Plasmonic biosensors for food control. Trends in Food Science & Technology.111, 128-40.
[12] Lin, Z., He, L. (2019) Recent advance in SERS techniques for food safety and quality analysis: A brief review. Current Opinion in Food Science.28, 82-7.
[13] Marin, M., Nikolic, M.V., Vidic, J. (2021) Rapid point‐of‐need detection of bacteria and their toxins in food using gold nanoparticles. Comprehensive Reviews in Food Science and Food Safety.20(6), 5880-900.
[14] Storhoff, J.J., Lazarides, A.A., Mucic, R.C., Mirkin, C.A., Letsinger, R.L., Schatz, G.C. (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society.122(19), 4640-50.
[15] Nimse, S.B., Song, K., Sonawane, M.D., Sayyed, D.R., Kim, T. (2014) Immobilization techniques for microarray: challenges and applications. Sensors.14(12), 22208-29.
[16] Cai, H., Wang, Y., He, P., Fang, Y. (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta.469(2), 165-72.
[17] Xu, C., Cai, H., Xu, Q., He, P., Fang, Y. (2001) Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection. Fresenius' journal of analytical chemistry.369, 428-32.
[18] Oliveira, B.B., Ferreira, D., Fernandes, A.R., Baptista, P.V. (2023) Engineering gold nanoparticles for molecular diagnostics and biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology.15(1), e1836.
[19] Amirinejad, R., Shirvani-Farsani, Z., Mohebbi, S. (2021) The application of DNA-conjugated gold nanoparticles to detect metabolites and nucleic acids in personalized medicine. Personalized Medicine Journal.6(21), 23-5.
[20] Yaghubi, F., Zeinoddini, M., Saeedinia, A.R., Azizi, A., Samimi Nemati, A. (2020) Design of localized surface plasmon resonance (LSPR) biosensor for immunodiagnostic of E. coli O157: H7 using gold nanoparticles conjugated to the chicken antibody. Plasmonics.15, 1481-7.
[21] Faridfar, G., Zeinoddini, M., Akbarzedehkolahi, S., Faridfar, S., Nemati, A.S. (2021) Immunodiagnostic of Vibrio cholerae O1 using localized surface plasmon resonance (LSPR) biosensor. International Microbiology.24, 115-22.
[22] Zeinoddini, M., Azizi, A., Bayat, S., Tavasoli, Z. (2018) Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics.13, 583-90.
[23] Taheri, R.A., Rezayan, A.H., Rahimi, F., Mohammadnejad, J., Kamali, M. (2016) Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosensors and Bioelectronics.86, 484-8.
[24] Huq, A., Haley, B.J., Taviani, E., Chen, A., Hasan, N.A., Colwell, R.R. (2012) Detection, isolation, and identification of Vibrio cholerae from the environment. Current protocols in microbiology.26(1), 6A. 5.1-6A. 5.51.
[25] Qadami, F., Molaeirad, A., Alijanianzadeh, M., Azizi, A., Kamali, N. (2018) Localized surface plasmon resonance (LSPR)-based nanobiosensor for methamphetamin measurement. Plasmonics.13, 2091-8.
[26] Kim, H., Lee, J.U., Song, S., Kim, S., Sim, S.J. (2018) A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers. Biosensors and Bioelectronics.101, 96-102.
[27] Chang, K., Wang, S., Zhang, H., Guo, Q., Hu, X., Lin, Z. (2017) Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. PLoS One.12(5), e0177131.
[28] Basso, C.R., Tozato, C.C., Crulhas, B.P., Castro, G.R., Junior, J.P.A., Pedrosa V.A. (2018) An easy way to detect dengue virus using nanoparticle-antibody conjugates. Virology.513, 85-90.
[29] Mucic, R.C., Storhoff, J.J., Mirkin, C.A., Letsinger, R.L. (1998) DNA-directed synthesis of binary nanoparticle network materials. Journal of the American Chemical Society.120(48), 12674-5.
[30] Ferrari, E. (2023) Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors.13(3), 411.
[31] Li, H., Rothberg, L. (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences.101(39), 14036-9.
[32] Liu, J., Lu, Y. (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition.45(1), 90-4.
[33] Nam, J-M., Thaxton, C.S., Mirkin, C.A. (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. science.301(5641), 1884-6.
[34] Wang, W., Chen, C., Qian, M., Zhao, X.S. (2008) Aptamer biosensor for protein detection using gold nanoparticles. Analytical Biochemistry.373(2), 213-9.
[35] Liu, J., Lu, Y. (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society.126(39), 12298-305.
[36] Hung, Y-L., Hsiung, T-M., Chen, Y-Y., Huang, Y-F., Huang, C-C. (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. The Journal of Physical Chemistry C.114(39), 16329-34.
[37] Wang, H., Provan, G.J., Helliwell, K. (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chemistry.87(2), 307-11.
[38] Alvarez-Puebla, R.A., dos Santos Jr, D.S., Aroca, R.F. (2007) SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials. Analyst.132(12), 1210-4.
[39] Kneipp, K., Wang, Y., Dasari, R.R., Feld, M.S., Gilbert, B.D., Janni, J. (1995) Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.51(12), 2171-5.
[40] Barkheh, H., Zeinoddini, M., Ranjbar, B. (2016) Colorimetric Detection of TNT Using Aptasensor based on Gold-nanoparticle. Journal of Police Medicine.5(3), 177-86.
[41] Barkheh, H., Zeinoddini, M., Ranjbar, B., Xodadadi, N. (2021) A Novel Strategy for Trinitrotoluene Detection Using Functionalized Gold Nanoparticles. Journal of Analytical Chemistry.76, 459-65.
[42] Sajid, M., Kawde, A-N., Daud, M. (2015) Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society.19(6), 689-705.
[43] Borse, V.B., Konwar, A.N., Jayant, R.D., Patil, P.O. (2020) Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug delivery and translational research.10, 878-902.
[44] Yu, W., Hao, A., Mei, Y., Yang, Y., Dai, C. (2022) A turn-on fluorescent aptasensor for ampicillin detection based on gold nanoparticles and CdTe QDs. Microchemical Journal.179, 107454.
[45] Huang, X., El-Sayed, M.A. (2010) Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of advanced research.1(1), 13-28.
[46] Kang, M.S., Lee, S.Y., Kim, K.S., Han, D-W. (2020) State of the art biocompatible gold nanoparticles for cancer theragnosis. Pharmaceutics.12(8), 701.