بهینه سازی استفاده از شربت ذرت برای تولید اندوگلوکانازII نوترکیب در مخمر متیل دوست

نویسندگان

1 دانشگاه تهران دانشکده مهندسی شیمی

2 گروه بیوتکنولوژیدانشکده مهندسی شیمیپردیس دانشکده های فنیدانشگاه تهران

3 مرکز تحقیقات پروتئیندانشگاه شهید بهشتی

چکیده
سلولاز یکی از آنزیم‌های صنعتی است که با اقبال جهانی به تولید بیواتانول نسل دوم، تولید و استفاده از آن بیش از پیش مورد توجه قرار گرفته است. سلولاز توسط ارگانیسم‌های متعددی همچون قارچ‌ها، باکتری‌ها، حشرات و گیاهان تولید می‌شود. با افزایش در مصرف این آنزیم و لزوم کاهش قیمت آنزیم برای تولید بیواتانول نسل دوم، تولید نوترکیب این آنزیم مورد توجه قرار گرفته است. در این مطالعه با بررسی شربت ذرت به عنوان منبع نیتروژن اصلی و همچنین منبع کربن دوم پس از گلیسرول، محیط کشت نیمه معینی برمبنای محیط کشت نمکی SYN6 طراحی شده است. سپس تولید زیست‌توده و تولید یکی از انواع پرکاربرد از آنزیمهای سلولاز به نام اندوگلوکانازII در مخمر متیل دوست هانسنولا پلیمورفا (ه. پلیمورفا) بهینه شده‌است. طراحی آزمایشات با روش یک فاکتوری انجام شده است و بهینه‌سازی با روش‌شناسی رویه‌پاسخ صورت پذیرفته است. نتایج آزمایشات نشان داده‌است که شربت ذرت در درصد وزنی حجمی 5/5% و 15/6% به ترتیب نقاط بهینه تولید زیست توده و تولید آنزیم اندوگلوکاناز هستند. شرایط بهینه محیط جدید در مقایسه با محیط SYN6 تولید زیست توده را 4/41% و تولید آنزیم نوترکیب را 7/69% افزایش داده است.

کلیدواژه‌ها

موضوعات


[1]Dewan, S. S. (2014). Global Markets for Enzymes in Industrial Applications. BCCReserach
[2]Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383
[3]Puranen, T., Alapuranen, M., & Vehmaanperä, J. (2014). Biotechnology and Biology of Trichoderma. Elsevier
[4]Noreen, H., Zia, M. A., Ali, S., & Hussain, T. (2014). Optimization of bio-polishing of polyester/cotton blended fabrics with cellulases prepared from Aspergillus niger. Indian Journal of Biotechnology, 13, 108–113.
[5]Wang, H., Pang, B., Wu, K., Kong, F., Li, B., & Mu, X. (2014). Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochemical Engineering Journal, 82, 183–187
[6]Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2014). Enzymatic deinking of photocopier waste papers using crude cellulase and xylanase of Coprinopsis cinerea PPHRI-4 NFCCI-3027. Appita Journal, 67, 291–301
[7]Madhu,H. N., Ramesh, P., Anand, M. V., Sathyanarayana, S., Sarjapuram, N., Chandrashekar, A., & Subramaniam, G. (2015). The potential of hydrolytic enzymes from Phoma exigua for fruit juice clarification. International Journal of Pharmacognosy and PhytochemicalResearch, 7, 750–757.
[8]Singh, A., Karmakar, S., Jacob, B. S., Bhattacharya, P., Kumar, S. P. J., & Banerjee, R. (2015). Enzymatic polishing of cereal grains for improved nutrient retainment. Journal of Food Science and Technology, 52, 3147–57.
[9]Hadj-Taieb, N., Grati, N., Ayadi, M., Attia, I., Bensalem, H., & Gargouri, A. (2012). Optimisation of olive oil extraction and minor compounds content of Tunisian olive oil using enzymatic formulations during malaxation. Biochemical Engineering Journal, 62, 79–85.
[10]MatYusoff, M., Gordon, M. H., & Niranjan, K. (2015). Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends in Food Science & Technology, 41, 60–82.
[11]Yu, H. Y., &Li, X. (2015). Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass and Bioenergy, 81, 19–25
[12]Visser, E. M., Leal, T. F., de Almeida, M. N., & Guimarães, V. M. (2015). Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling. Biotechnology for Biofuels, 8, 5
[13]Suwannarangsee, S., Arnthong, J., Eurwilaichitr, L., & Champreda, V. (2014). Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues. Journal of Microbiology and Biotechnology, 24, 1427–1437.
[14]Adav, S. S., Ravindran, A., & Sze, S. K. (2015). Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes. Journal of Proteomics, 119, 154–68.
[15]Kubicek, C. P. (2013). Systems biological approaches towards understanding cellulase production by Trichoderma reesei. Journal of Biotechnology, 163, 133–42.
Rosseto, F. R., Manzine, L. R., de Oliveira Neto, M., & Polikarpov, I. (2016). Biophysical and biochemical studies of a major endoglucanase secreted by Xanthomonas campestris pv. campestris. Enzyme and Microbial Technology, 91, 1–7
Wang, D., Kim, D. H., Seo, N., Yun, E. J., An, H. J., Kim, J.-H., & Kim, K. H. (2016). A Novel Glycoside Hydrolase Family 5 β-1,3-1,6-Endoglucanase from Saccharophagus degradans 2-40 T and its Transglycosylase Activity. Applied and Environmental Microbiology, AEM.00635–16.
Li, H., Wu, S., Wirth, S., Hao, Y., Wang, W., Zou, H., Wang, G. (2016). Diversity and activity of cellulolytic bacteria, isolated from the gut contents of grass carp (Ctenopharyngodon idellus) (Valenciennes) fed on Sudan grass (Sorghum sudanense) or artificial feedstuffs. Aquaculture Research, 47, 153–164.
Shirley, D., Oppert, C., Reynolds, T. B., Miracle, B., Oppert, B., Klingeman, W. E., & Jurat-Fuentes, J. L. (2014). Expression of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae. Insect Science, 21, 609–618.
Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2016). Purification and characterization of endo β-1,4-d-glucanase from Trichoderma harzianum strain HZN11 and its application in production of bioethanol from sweet sorghumbagasse. 3 Biotech, 6, 1–10.
Budihal, S. R., Agsar, D., & Patil, S. R. (2016). Enhanced production and application of acidothermophilic Streptomyces cellulase. Bioresource Technology, 200, 706–712
ang, F., Gong, Y., Liu, G., Zhao, S., & Wang, J. (2015).Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression. Journal of Microbiology and Biotechnology, 25, 1101–7
Anusree, M., Wendisch, V. F., &Nampoothiri, K. M. (2016). Co-expression of endoglucanase and beta-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. Bioresource Technology, 213, 239-44
Gündüz Ergün, B., & Çalik, P. (2016). Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess and Biosystems Engineering, 39, 1–36.
Gellissen, G.(2002). Hansenula polymorpha: biology ana application,Wiley-VCH, Weinheim, 111-112. [26]Watkinson, S. C., Boddy, L., & Money, N. (2015). The Fungi. Academic Press, Massachusett, 401-424
Watkinson, S. C., Boddy, L., & Money, N. (2015). The Fungi. Academic Press, Massachusett, 401-424
Gellissen,G. (2000) Heterologous protein production in methylotrophic yeasts. Applied microbiology and biotechnology, 54, 741-50
Hartree E. F., (1985) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48, 422-427
Waldhoff, H., & Spilker, R. (2016). Handbook Of Detergents, Part C: Analysis. CRC Press, New York, 481.
Kent, J. A. (2013). Handbook of Industrial Chemistry and Biotechnology. Springer Science, New York, 1278-9