ویژگی‌های باکتری گرماپای مولد استیک‌اسید Acetobacter sp. A10

نویسندگان

1 گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

2 گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)، تهران، ایران

چکیده
اهداف: سازگاری سویه‌های میکروبی بومی هر منطقه از لحاظ آب‌وهوای خاص آن مناطق بسیار مورد توجه است. بررسی سویه‌های بومی باکتری‌های تولیدکننده استیک‌اسید می‌تواند در استفاده بهینه از آنها بسیار موثر باشد. هدف این مطالعه، بررسی ویژگی‌های باکتری گرماپای مولد استیک‌اسید Acetobacter sp. A۱۰ بود.

مواد و روش‌ها: در مطالعه تجربی حاضر، از سویه بومی گرماپای Acetobacter sp. A۱۰ استفاده شد. برای تهیه کشت تازه و نگهداری سویه گرماپای از محیط کشت GYC و به‌منظور تولید استیک‌اسید توسط سویه Acetobacter sp. A۱۰، از محیط کشت EYB استفاده شد. اثر غلظت‌‌‌های اولیه اتانول و استیک‌اسید بر تولید استیک‌اسید توسط سویه Acetobacter sp. A۱۰ با کمک محیط‌‌‌های کشت حاوی ۹-۲% اتانول و ۵-۲% استیک‌اسید مورد بررسی قرار گرفت.

یافته‌ها: سویه Acetobacter sp. A۱۰ توانست در شرایط بهینه یعنی دمای C°۳۳، pH برابر ۴ و در فلاسک شیاردار با سرعت ۱۵۰ دور در دقیقه با غلظت اولیه ۴۰% اتانول در مدت ۲۴ ساعت به مقدار ۴۰گرم بر لیتر استیک‌اسید تولید کند. این سویه در دمای C°۳۷ نیز قادر بود در حضور غلظت اولیه ۴% استیک‌اسید و غلظت اولیه ۸% اتانول، استیک‌اسید تولید کند. سرعت فرمنتاسیون در سویه Acetobacter sp. A۱۰ ۵/۲برابر بیش از سویه‌های مزوفیل بود.

نتیجه‌گیری: سویه Acetobacter sp. A۱۰ در دامنه دمایی متفاوتی نسبت به سویه‌‌‌های مزوفیل دارای فعالیت است و قدرت تحمل اتانول و استیک‌اسید را نیز تا غلظت‌‌های بیشتری دارا است. به‌علاوه، دارای بازدهی بالاتر و نیز سرعت و توان فرمنتاسیون بیشتری است.

کلیدواژه‌ها

موضوعات


Garrity G, Berner DJ, Krieg NR, Staley JT, editors. Bergy's manual of systematic bacteriology, part C. 2nd Volume. New York City: Springer US; 2005. pp: 41-95. [Link]
Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. Development of thermotolerant acetic acid baeteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem. 1997;61(1):138-45. [Link] [DOI:10.1271/bbb.61.138]
Kanchanarach W, Theeragool G, Yakushi T, Toyama H, Adachi O, Matsushita K. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol. 2010;85(3):741-51. [Link] [DOI:10.1007/s00253-009-2203-5]
Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and distruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol. 2009;75(13):4240-7. [Link] [DOI:10.1128/AEM.00640-09]
Hattori H, Yakushi T, Matsutani M, Moonmangmee D, Toyama H, Adachi O, et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl Microbiol Biotechnol. 2012;95(6):1531-40. [Link] [DOI:10.1007/s00253-012-4005-4]
Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, et al. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem. 2000;64(11):2306-15. [Link] [DOI:10.1271/bbb.64.2306]
Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushitak K. New developments in oxidative fermentation. Appl Microbiol Biotechnol. 2003;60(6):643-53. [Link] [DOI:10.1007/s00253-002-1155-9]
Adachi O, Yakushi T. Membrane-bound dehydrogenases of acetic acid bacteria. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A, editors. Acetic acid bacteria: Ecology and physiology. Tokyo: Springer Japan; 2016. pp. 273-97. [Link]
Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol.1994;36:247–301. [Link] [DOI:10.1016/S0065-2911(08)60181-2]
Yakushi T, Matsushita K. Alcohol dehydrogenase of acetic acid bacteria: Structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol. 2010;86(5):1257-65. [Link] [DOI:10.1007/s00253-010-2529-z]
Adachi O, Miagawa E, Shinagawa E, Matsushita K, Ameyama M. Purification and properties of particular alcohol dehdrogenas from Acetobacter aceti. Agric Biol Chem. 1978;42(12):2331-40.
https://doi.org/10.1271/bbb1961.42.2331 [Link] [DOI:10.1080/00021369.1978.10863357]
Matsushita K, Yakushi T, Takaki Y, Toyama H, Adachi O. Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenas in Gluconobacter suboxydans. J Bacteriol. 1995;177(22):6552-9. [Link] [DOI:10.1128/jb.177.22.6552-6559.1995]
Moghadamy F, Souodi MR, Rezvaniyan Zadeh MR, Shayesteh S. Isolation of acetic acid producing bacteria from domestic vinegar and assessment of their thermal stability. J Sci Univ Tehran. 2004;30(3):541-9. [Persian] 18- Gupta A, Singh VK, Qazi GN, Kumar A. Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol. 2001;3(3):445-56. [Link]
De Ory I, Romero LE, Cantero D. Modeling the kinetics of growth of Acetobacter aceti in discontinuous culture: Influence of the temperature of operation. Appl Microbiol Biotechnol. 1998;49(2):189-93. [Link] [DOI:10.1007/s002530051157]
Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. Purification and characterization of particulate alcohol dehydrogenase from Geluconobacter suboxydans. Agric Biol Chem. 1978;42(11):2045-56.
https://doi.org/10.1080/00021369.1978.10863306 [Link] [DOI:10.1271/bbb1961.42.2045]
Tamaki N, Nakamura M, Kimura K, Hama T. Purification and properties of aldehyde dehydrogenase from Saccharomyces cerevisiae. J Biochem. 1977;82(1):73-9. [Link] [DOI:10.1093/oxfordjournals.jbchem.a131694]
Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol. 2006;70(3):366-73. [Link] [DOI:10.1007/s00253-005-0073-z]
Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Biosci Biotechnol Biochem. 2011;75(12):2418-20. [Link] [DOI:10.1271/bbb.110575]
Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Biosci Biotechnol Biochem. 2011;75(12):2418-20. [Link] [DOI:10.1271/bbb.110575]