تغییرات رسانایی بافت کبد در طول الکتروپوریشن بازگشت‌ناپذیر و محاسبه توزیع میدان الکتریکی

نویسندگان

گروه فیزیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
اهداف: در فرآیند الکتروپوریشن بازگشت‌ناپذیر، غشای سلول‌های سرطانی به‌وسیله پالس‌های الکتریکی با شدت میدان بالا، به‌صورت بازگشت‌ناپذیر آسیب می‌بیند و سلول‌ها می‌میرند. عوامل اثرگذار بر توزیع میدان شامل ولتاژ، پهنای پالس و رسانایی الکتریکی بافت است. هدف مطالعه حاضر بررسی تغییرات رسانایی بافت کبد در طول الکتروپوریشن بازگشت‌ناپذیر و محاسبه توزیع میدان الکتریکی بود.

مواد و روش‌ها: در مطالعه تجربی حاضر با استفاده از شبیه‌سازی، ارتباط بین پهنای پالس و شدت ولتاژ هر پالس در تغییرات رسانایی در طول الکتروپوریشن بازگشت‌ناپذیر بررسی شد و توزیع میدان الکتریکی مورد محاسبه قرار گرفت. در این شبیه‌سازی به‌منظور حل معادلات، نرم‌افزار COMSOL ۵ به کار رفت. الکترودهای مورد استفاده، سوزنی بودند و بافت کبد نیز به‌عنوان بافت هدف استفاده شد. هشت پالس با فرکانس تحریکی یک‌هرتز و پهنای پالس ۱۰۰میکروثانیه و ۲میلی‌ثانیه، با شدت میدان‌های الکتریکی ۱۰۰۰ تا ۳۰۰۰ولت بر سانتی‌متر به‌عنوان پالس‌های الکتریکی تحریکی به کار رفتند.

یافته‌ها: رسانایی بافت در طول زمان اعمال پالس افزایش یافت. تغییرات رسانایی در ناحیه نوک الکترودها به‌مراتب بیشتر از ناحیه بین دو ردیف الکترودها بود. با افزایش شدت میدان الکتریکی پالس، رسانایی بافت نیز افزایش یافت. زمانی که رسانایی بافت ثابت و متغیر بود، بیشینه شدت میدان الکتریکی به‌ترتیب ۳۸۷۹ و ۳۴۴۸ولت بر سانتی‌متر به دست آمد.

نتیجه‌گیری: در زمان ارسال پالس‌های الکتریکی، رسانایی بافت افزایش می‌یابد. توزیع میدان الکتریکی به رسانایی در نقطه مورد نظر وابسته است و با تغییر این رسانایی به‌علت انجام الکتروپوریشن، توزیع میدان الکتریکی نیز تغییر می‌یابد و بیشینه شدت میدان الکتریکی کاهش پیدا می‌کند.

کلیدواژه‌ها

موضوعات


Dunki-Jacobs EM, Philips P, Martin RC. Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas. J Am Coll Surg. 2014;218(2):179-87. [Link] [DOI:10.1016/j.jamcollsurg.2013.10.013]
Shankayi Z, Firoozabadi SM, Hassan ZS. Optimization of electric pulse amplitude and frequency in vitro for low voltage and high frequency electrochemotherapy. J Membr Biol. 2014;247(2):147-54. [Link] [DOI:10.1007/s00232-013-9617-9]
Shankayi Z, Firoozanadi SM, Saraf Hassan Z. Comparison of low voltage amplitude electrochemotherapy with 1 Hz and 5 KHz frequency in volume reduction of mouse mammary tumor in Balb/c Mice. Koomesh. 2012;13(4):486-90. [Persian] [Link]
Shankayi Z, Pourmirjafari Firoozabadi SM, Zohair Saraf H. The endothelial permeability increased by low voltage and high frequency electroporation. J Biomed Phys Eng. 2013;3(3):87-92. [Link]
Čorović S, Pavlin M, Miklavčič D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online. 2007;6:37. [Link] [DOI:10.1186/1475-925X-6-37]
Lu DS, Kee ST, Lee EW. Irreversible electroporation: Ready for prime time?. Tech Vasc Interv Radiol. 2013;16(4):277-86. [Link] [DOI:10.1053/j.tvir.2013.08.010]
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One. 2014;9(8):e103083. [Link] [DOI:10.1371/journal.pone.0103083]
Adeyanju OO, Al-Angari HM, Sahakian AV. The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol Oncol. 2012;46(2):126-35. [Link] [DOI:10.2478/v10019-012-0026-y]
Corovic S, Zupanic A, Miklavcic D. Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans Plasma Sci. 2008;36(4):1665-72. [Link] [DOI:10.1109/TPS.2008.2000996]
Moisescu MG, Radu M, Kovacs E, Mir LM, Savopol T. Changes of cell electrical parameters induced by electroporation, a dielectrophoresis study. Biochim Biophys Acta. 2013;1828(2):365-72. [Link] [DOI:10.1016/j.bbamem.2012.08.030]
Kranjc M, Bajd F, Serša I, Miklavčič D. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation. Physiol Meas. 2014;35(6):985-96. [Link] [DOI:10.1088/0967-3334/35/6/985]
Ivorra A, Rubinsky B. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry. 2007;70(2):287-95. [Link] [DOI:10.1016/j.bioelechem.2006.10.005]
Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D. Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online. 2013;12:16. [Link] [DOI:10.1186/1475-925X-12-16]
Sano MB, Neal II RE, Garcia PA, Gerber D, Robertson J, Davalos RV. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83. [Link] [DOI:10.1186/1475-925X-9-83]
Pliquett UF, Schoenbach KH. Changes in electrical impedance of biological matter due to the application of ultrashort high voltage pulses. IEEE Trans Dielectr Electr Insul. 2009;16(5):1273-9. [Link] [DOI:10.1109/TDEI.2009.5293938]
Lackovic I, Magjarevic R, Miklavcic D. Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans Dielectr Electr Insul. 2009;16(5):1338-47. [Link] [DOI:10.1109/TDEI.2009.5293947]