غربالگری و جداسازی باکتری هالوفیل مارینوباکتر (جدایه S-14) تولید‌کننده آنزیم خارج‌سلولی لیپاز از چشمه آب شور باداب‌سورت

نویسندگان

1 گروه زیست‌شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

2 مرکز تحقیقات بیوشیمی و بیوفیزیک، دانشگاه تهران، تهران، ایران

چکیده
اهداف: امروزه توانایی تولید آنزیم‌های هیدرولازی که در غلظت‌های بالای نمک فعال هستند، به‌عنوان رویکرد تازه‌ای در استفاده از باکتری‌های هالوفیل در بیوتکنولوژی مطرح است. هدف این پژوهش، غربالگری و جداسازی باکتری هالوفیل مارینوباکتر (جدایه S-۱۴) تولید‌کننده آنزیم خارج‌سلولی لیپاز از چشمه آب شور باداب‌سورت بود.

مواد و روش‌ها: در پژوهش تجربی حاضر، ۴۲ کلنی خالص باکتری، از نمونه‌های مختلف آب، خاک، رسوب و لجن یکی از چشمه‌های آب شور باداب‌سورت با تکنیک غربالگری روی محیط کشت اختصاصی باکتری‌های هالوفیل جداسازی شدند. جدایه S-۱۴ که بیشترین فعالیت لیپازی را از خود نشان داد، برای شناسایی توسط روش‌های بیوشیمیایی و آنالیز ژن ۱۶S rRNA انتخاب شد. به‌منظور بهینه‌سازی شرایط رشد جدایه با درنظرگرفتن بیشینه زمان رشد باکتری (۷۲ ساعت)، دما، غلظت نمک، pH، میزان مصرف کربوهیدرات و آسیدامینه بررسی شدند. نتایج حاصل با استفاده از نرم‌افزار Chromas pro ۲.۱.۱ ویرایش و با اطلاعات بانک اطلاعاتی EzTaxon مقایسه شد. سویه‌هایی که تشابه بیشتری با جدایه منتخب داشتند، مشخص شدند. آنالیز توالی ۱۶S rRNA توسط نرم‌افزارهای BioEdit ۷.۱.۹، Clustal-۲X ۲.۱ و MEGA ۶ انجام و درخت فیلوژنی توسط الگوریتم اتصال- همسایگی ترسیم شد.

یافته‌ها: جدایه S-۱۴ با تشابه بیش از ۹۹% با دو گونه مارینوباکتر فلاویماریس (Marinobacter flavimaris) و مارینوباکتر ادهارنس (Marinobacter adhaerens) تجانس داشت. جدایه S-۱۴ بیشترین میزان رشد را در غلظت نمک ۵%، دمای C˚۳۵ و میزان اسیدیته ۷/۰ نشان داد.

نتیجه‌گیری: جدایه S-۱۴، تولید‌کننده مناسبی برای آنزیم خارج‌سلولی لیپاز است و می‌تواند از فروکتوز و اسیدآمینه فنیل‌آلانین به‌عنوان تنها منبع کربن و انرژی استفاده کند.

کلیدواژه‌ها

موضوعات


Ventosa A, Nieto JJ. Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol. 1995;11(1):85-94. [Link] [DOI:10.1007/BF00339138]
Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R. Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric. 2012;92(13):2575-80. [Link] [DOI:10.1002/jsfa.5860]
Çalımlıoğlu B, Arga KY. Proteins from halophilic bacteria: Purification and their applications. In: Iconcept Press. Protein purification: Principles and trends. Hong Kong: iConcept Press; 2014. [Link]
Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, et al. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One. 2011;6(8):e23325. [Link] [DOI:10.1371/journal.pone.0023325]
Schreck SD, Grunden AM. Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol. 2014;98(3):1011-21. [Link] [DOI:10.1007/s00253-013-5417-5]
Gupta R, Gupta N, Rathi P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl Microbiol Biotechnol. 2004;64(6):763-81. [Link] [DOI:10.1007/s00253-004-1568-8]
Mustranta A, Forssell P, Poutanen K. Comparison of lipases and phospholipases in the hydrolysis of phospholipids. Process Biochem. 1995;30(5):393-401. [Link] [DOI:10.1016/0032-9592(94)00030-1]
Uratani JM, Kumaraswamy R, Rodríguez J. A systematic strain selection approach for halotolerant and halophilic bioprocess development: A review. Extremophiles. 2014;18(4):629-39. [Link] [DOI:10.1007/s00792-014-0659-4]
Babavalian H, Amoozegar MA, Pourbabaee AA, Moosazadeh Moghaddam M, Shakeri F. Isolation and identification of moderately halophilic bacteria producing hydrolytic enzymes from the largest hypersaline playa in Iran. Microbiology. 2013;82(4):466-74. [Link] [DOI:10.1134/S0026261713040176]
Abdolmalaki AY. Study on the role of cultural, social activities urban tourism developmonet (Case study of tourism in Sari city). 1st National Conference of Urbanism, Urban Management and Sustainable Development. Tehran: Iranian Architecture Center; 2015. [Persian] [Link]
Biswas J, Paul AK. Production of extracellular enzymes by halophilic bacteria isolated from solar salterns. Int J Appl Biol Pharm Technol. 2013;4(4):30-6. [Link]
Mehrshad M, Amoozegar MA, Yakhchali B, Shahzedeh Fazeli SA. Biodiversity of moderately halophilic and halotolerant bacteria in the Western coastal line of Urmia lake. Biol J Microorg. 2012;1(2):49-70. [Persian] [Link]
Coico R, Kowalik T, Quarles J, Stevenson B, Taylor R, editors. Current protocols in microbiology. Hoboken: John Wiley & Sons. 2008;8(10):1.0.1-1.0.3 [Link]
Jayachandra SY, Anil Kumar S, Merley DP, Sulochana MB. Isolation and characterization of extreme halophilic bacterium Salinicoccus sp. JAS4 producing extracellular hydrolytic enzymes. Recent Res Sci Technol. 2012;4(4):46-9. [Link]
Karbalaei Heidari HR, Ziaee AA, Schaller J, Amoozegar MA. Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, Salinivibrio sp. strain AF-2004. Enzyme Microb Technol. 2007;40(4):266-72. [Link] [DOI:10.1016/j.enzmictec.2006.04.006]
Ardakani MR, Poshtkouhian A, Amoozegar MA, Zolgharnein H. Isolation of moderately halophilic pseudoalteromonas producing extracellular hydrolytic enzymes from Persian Gulf. Indian J Microbiol. 2012;52(1):94-8. [Link] [DOI:10.1007/s12088-011-0243-x]
Jeffries CD, Holtman DF, Guse DG. Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol. 1957;73(4):590-1. [Link]
Allais JJ, Kammoun S, Blanc P, Girard C, Baratti JC. Isolation and characterization of bacterial strains with inulinase activity. Appl Environ Microbiol. 1986;52(5):1086-90. [Link]
Shaikh SA, Deshpande MV. Chitinolytic enzymes: Their contribution to basic and applied research. World J Microbiol Biotechnol. 1993;9(4):468-75. [Link] [DOI:10.1007/BF00328035]
Govender L, Naidoo L, Setati ME. Isolation of hydrolase producing bacteria from Sua pan solar salterns and the production of endo-1, 4-bxylanase from a newly isolated haloalkaliphilic Nesterenkonia sp. Afr J Biotechnol. 2009;8(20):5458-66. [Link]
Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62(Pt 3):716-21. [Link] [DOI:10.1099/ijs.0.038075-0]
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. [Link] [DOI:10.1093/molbev/mst197]
Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol. 1982;128:1959-68. [Link] [DOI:10.1099/00221287-128-9-1959]
Zanjirband M, Kasra Kermanshahi R, Golbang N. Isolation of moderately halophilic indigenous bacterial strains producing salt-tolerant exteracellular hydrolytic enzymes, the effect of NaCl salt on enzyme production. Iran J Biol. 2009;22(3):490-7. [Persian] [Link]
Hough DW, Danson MJ. Extremozymes. Curr Opin Chem Boil. 1999;3(1):39-46. [Link] [DOI:10.1016/S1367-5931(99)80008-8]
Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol. 2008;48(3):160-7. [Link] [DOI:10.1002/jobm.200700361]
Schut F, De Vries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, et al. Isolation of typical marine bacteria by dilution culture: Growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol. 1993;59(7):2150-60. [Link]
Button DK, Schut F, Quang P, Martin R, Robertson BR. Viability and isolation of marine bacteria by dilution culture: Theory, procedures, and initial results. Appl Environ Microbiol. 1993;59(3):881-91. [Link]
Zarparvar P, Amoozegar MA, Fallahian MR. Diversity of culturable moderate halophilic and halotolerant bacteria in Incheh Boroun hyper saline wetland in Iran. J Cell Mol Res. 2014;27(1):44-56. [Persian] [Link]
Ghozlan H, Deif H, Kandil RA, Sabry S. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J Gen Appl Microbiol. 2006;52(2):63-72. [Link] [DOI:10.2323/jgam.52.63]
Bagheri M, Amoozegar MA, Didari M, Makhdoumi Kakhki A, Schumann P, Spröer C, et al. Marinobacter persicus sp. nov., a moderately halophilic bacterium from a saline lake in Iran. Antonie Van Leeuwenhoek. 2013;104(1):47-54. [Link] [DOI:10.1007/s10482-013-9923-3]
Zhong ZP, Liu Y, Liu HC, Wang F, Zhou YG, Liu ZP. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol. 2015;65(9):2838-45. [Link] [DOI:10.1099/ijs.0.000338]
Shieh WY, Jean WD, Lin YT, Tseng M. Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol. 2003;49(4):244-52. [Link] [DOI:10.1139/w03-032]
Liu C, Chen CX, Zhang XY, Yu Y, Liu A, Li GW, et al. Marinobacter antarcticus sp. nov., a halotolerant bacterium isolated from Antarctic intertidal sandy sediment. Int J Syst Evol Microbiol. 2012;62(Pt 8):1838-44. [Link] [DOI:10.1099/ijs.0.035774-0]
Ng HJ, López-Pérez M, Webb HK, Gomez D, Sawabe T, Ryan J, et al. Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS One. 2014;9(9):e106514. [Link] [DOI:10.1371/journal.pone.0106514]