تاثیر میدان الکترومغناطیسی و نیتریک‌اکسید بر بیان مارکر پروتئینی تمایز عصبی و درصد زنده‌مانی سلول‌های بنیادی مزانشیمی مغز استخوان موش صحرایی

نویسندگان

1 گروه بیوفیزیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه ژنتیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه بیوتکنولوژی، سازمان پژوهش‌های ملی و صنعتی ایران، تهران، ایران

چکیده
اهداف: نیتریک‌اکسید (NO) در حفظ حالت بنیادی سلول نقش مهمی دارد و دامنه تاثیرگذاری میدان الکترومغناطیسی (EMF) برخلاف میدان الکتریکی بسیار عمیق است. هدف این پژوهش، بررسی تاثیر میدان الکترومغناطیسی و نیتریک‌اکسید بر بیان مارکر پروتئینی تمایز عصبی و درصد زنده‌مانی سلول‌های بنیادی مزانشیمی مغز استخوان موش صحرایی بود.

مواد و روش‌ها: پژوهش تجربی حاضر روی سلول‌های بنیادی مزانشیمی مغز استخوان موش صحرایی نژاد ویستار اجرا شد. به‌منظور تیمار سلول‌ها از دو غلظت بالا (یک‌میلی‌مولار) و پایین (۱۰میکرومولار Deta-NO) به‌عنوان مولکول آزادکننده نیتریک‌اکسید و میدان الکترومغناطیسی با فرکانس ۵۰هرتز استفاده و با گروه بدون تیمار (کنترل) مقایسه شد. درصد زنده‌زمانی سلول‌ها با آزمایش MTT، بیان ژن مسیر تمایز عصبی با روش RT-PCR و بیان پروتئین مارکر تمایز عصبی با ایمنوسیتوشیمی بررسی شد. داده‌ها با نرم‌افزار SPSS ۱۳ از طریق آزمون تحلیل واریانس یک‌طرفه تحلیل شدند.

یافته‌ها: بعد از ۲۴ ساعت تیمار سلول‌ها با نیتریک‌اکسید و EMF، درصد زنده‌مانی سلول‌ها در گروه‌ها نسبت به گروه کنترل به‌صورت معنی‌داری کاهش یافت. بعد از ۴۸ ساعت، EMF به‌تنهایی و همچنین با غلظت پایین نیتریک‌اکسید، کاهشی در درصد زنده‌مانی سلول‌ها ایجاد نکرد و رشد سلول‌ها نسبت به گروه کنترل افزایش یافت. در گروه تیمارشده با غلظت بالای نیتریک‌اکسید به‌همراه EMF، پروتئین MAP۲ در سلول‌های بیشتری نسبت به گروه کنترل و تیمارشده با EMF بیان شد.

نتیجه‌گیری: میدان الکترومغناطیسی به‌همراه غلظت بالای نیتریک‌اکسید از تعداد سلول‌های بنیادی مزانشیمی مغز استخوان موش صحرایی می‌کاهد و با افزایش اندازه سلول، بیان ژن و پروتئین مارکر تمایز عصبی، تمایز آنها را به سمت سلول‌های شبه عصب تسهیل می‌کند.

کلیدواژه‌ها

موضوعات


Eichholz GG. Non-ionizing radiation, part 1: Static and Extremely Low-Frequency (ELF) electric and magnetic fields. Health Phys. 2002;83(6):920. [Link] [DOI:10.1097/00004032-200212000-00021]
Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015;15(1):96-108. [Link] [DOI:10.1016/j.scr.2015.04.009]
Ascenzi P, Di Masi A, Sciorati C, Clementi E. Peroxynitrite - an ugly biofactor?. Biofactors. 2010;36(4):264-73. [Link] [DOI:10.1002/biof.103]
Beltran-Povea A, Caballano-Infantes E, Salguero-Aranda C, Martín F, Soria B, Bedoya FJ, et al. Role of nitric oxide in the maintenance of pluripotency and regulation of the hypoxia response in stem cells. World J Stem Cells. 2015;7(3):605-17. [Link] [DOI:10.4252/wjsc.v7.i3.605]
Bonafè F, Guarnieri C, Muscari C. Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem. 2015;71(1):141-53. [Link] [DOI:10.1007/s13105-014-0373-9]
Chuang JH, Tung LC, Lin Y. Neural differentiation from embryonic stem cells in vitro: An overview of the signaling pathways. World J Stem Cells. 2015;7(2):437-47. [Link] [DOI:10.4252/wjsc.v7.i2.437]
Pilla AA. Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem Biophys Res Commun. 2012;426(3):330-3. [Link] [DOI:10.1016/j.bbrc.2012.08.078]
Förstermann U, Li H. Therapeutic effect of enhancing endothelial Nitric Oxide Synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213-23. [Link] [DOI:10.1111/j.1476-5381.2010.01196.x]
Liu L, Wang D, Wang J, Ji H, Zhang Y. NOAD, a novel nitric oxide donor, induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma Bel-7402 cells. Toxicol In Vitro. 2015;29(7):1289-97. [Link] [DOI:10.1016/j.tiv.2015.05.003]
Tejedo JR, Tapia-Limonchi R, Mora-Castilla S, Cahuana GM, Hmadcha A, Martin F, et al. Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis. 2010;1:e80. [Link] [DOI:10.1038/cddis.2010.57]
Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int. 2013;62(4):418-24. [Link] [DOI:10.1016/j.neuint.2013.02.002]
Choi BM, Pae HO, Jang SI, Kim YM, Chung HT. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol. 2002;35(1):116-26. [Link]
Huang NF, Fleissner F, Sun J, Cooke JP. Role of nitric oxide signaling in endothelial differentiation of embryonic stem cells. Stem Cells Dev. 2010;19(10):1617-26. [Link] [DOI:10.1089/scd.2009.0417]
Nott A, Riccio A. Nitric oxide-mediated epigenetic mechanisms in developing neurons. Cell Cycle. 2009;8(5):725-30. [Link] [DOI:10.4161/cc.8.5.7805]
Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6(2):141-52. [Link] [DOI:10.1016/j.stem.2010.01.001]
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315-424. [Link] [DOI:10.1152/physrev.00029.2006]