اثر یون‌های فلزی بر فعالیت، پایداری و ساختار آسپارتیک‌پروتئاز خالص‌شده از میوه گیاه پنیرباد

نویسندگان

1 گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران

2 گروه بیوشیمی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه زیست‌شناسی، دانشکده علوم و مهندسی، دانشگاه گنبدکاووس، گنبدکاووس، ایران

چکیده
میوه گیاه پنیرباد (Withania coagulans) سرشار از پروتئازهای اسیدی است و عصاره آبی آن از دیرباز برای تولید پنیر استفاده شده است. با این وجود، مطالعات اندکی در خصوص خالص‌سازی و تعیین خصوصیات بیوشیمیایی این آنزیم صورت گرفته است. از جمله شرایط مهم برای استفاده صنعتی از آنزیم می‌توان به دو مورد شامل پایداری آنزیم نسبت به یون‌های فلزی و عدم نیاز به یون برای پایداری و عملکرد اشاره کرد. بر این اساس، در این پژوهش، تاثیر غلظت‌های مختلف انواع یون‌های فلزی بر فعالیت، پایداری و تا حدی بر خصوصیات ساختاری پروتئاز خالص‌شده مورد مطالعه قرار گرفت. با توجه به نتایج به‌دست‌آمده مشاهده شد که آنزیم نسبت به سدیم‌کلرید و کلسیم‌کلرید نسبتاً پایدار است، ولی با افزایش بیشتر غلظت این نمک‌ها پایداری و فعالیت آنزیم به تدریج کاهش می‌یابد. همچنین، مشاهده شد که آنزیم نسبت به انواع یون‌های فلزی در غلظت‌های پایین پایدار است و تنها Hg2+ فعالیت و پایداری آنزیم را به‌طور قابل ملاحظه‌ای کاهش می‌دهد. با مطالعه نقش Ca2+ در پایداری دمایی آنزیم مشخص شد که این یون هیچ نقشی در پایداری بالای آنزیم در دمای °C67 ندارد. علاوه بر این، با بررسی تاثیر یون‌های فلزی بر طیف فلوئورسانس ذاتی آنزیم مشاهده شد که تمامی یون‌های آزمایش‌شده شدت نشر را افزایش و موجب انتقال طول موج ماکزیمم به طول موج‌های کوتاه‌تر شدند. در مجموع نتایج حاصل از این مطالعه نشان از پایداری بالای این آنزیم در مقابل انواع یون‌های فلزی به‌ویژه یون‌های فلزات سنگین داشته و از این لحاظ برای استفاده در صنعت مطلوب است.

کلیدواژه‌ها

موضوعات


Yegin S, Dekker P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Sci Technol. 2013;93(6):565-94. [Link] [DOI:10.1007/s13594-013-0137-2]
Jacob M, Jaros D, Rohm H. Recent advances in milk clotting enzymes. Int J Dairy Technol. 2011;64(1):14-33. [Link] [DOI:10.1111/j.1471-0307.2010.00633.x]
Kazemipour N, Salehi Inchebron M, Valizadeh J, Sepehrimanesh M. Clotting characteristics of milk by Withania coagulans: Proteomic and biochemical study. Int J Food Prop. 2017;20(6):1290-301. [Link] [DOI:10.1080/10942912.2016.1207664]
Naz Sh, Masud T, Nawaz MA. Characterization of milk coagulating properties from the extract of Withania coagulans. Int J Dairy Technol. 2009;62(3):315-20. [Link] [DOI:10.1111/j.1471-0307.2009.00492.x]
Pezeshki A, Hesari J, Ahmadi Zonoz A, Ghambarzadeh B. Influence of Withania coagulans protease as a vegetable rennet on proteolysis of Iranian UF white cheese. J Agric Sci Technol. 2011;13:567-76. [Link]
Fernandes P. Enzymes in food processing: A condensed overview on strategies for better biocatalysts. Enzyme Res. 2010;2010:862537. [Link] [DOI:10.4061/2010/862537]
Saxena R, Singh R. Metal ion and pH stable protease production using agro-industrial waste. J Ecobiotechnol. 2010;2(4):1-5. [Link]
Rao S, Mizutani O, Hirano T, Masaki K, Iefuji H. Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2. J Biosci Bioeng. 2011;112(5):441-6. [Link] [DOI:10.1016/j.jbiosc.2011.07.013]
Boström M, Williams DRM, Ninham BW. Why the properties of proteins in salt solutions follow a Hofmeister series. Curr Opin Colloid Interface Sci. 2004;9(1-2):48-52. [Link] [DOI:10.1016/j.cocis.2004.05.001]
Yang Z. Hofmeister effects: An explanation for the impact of ionic liquids on biocatalysis. J Biotechnol. 2009;144(1):12-22. [Link] [DOI:10.1016/j.jbiotec.2009.04.011]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. [Link] [DOI:10.1016/0003-2697(76)90527-3]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5. [Link] [DOI:10.1038/227680a0]
Arima K, Yu J, Iwasaki Sh. Milk-clotting enzyme from Mucor pusillus var. Lindt. Methods Enzymol. 1970;19:446-59. [Link] [DOI:10.1016/0076-6879(70)19033-1]
Kent UM. Purification of antibodies using ammonium sulfate fractionation or gel filtration. In: Javois LC, editor. Immunocytochemical methods and protocols, methods in molecular biology™. 115th Volume. New York City: Humana Press; 1999. pp. 11-8. [Link] [DOI:10.1385/1-59259-213-9:11]
Vallejo JA, Ageitos JM, Poza M, Villa TG. Short communication: A comparative analysis of recombinant chymosins. J Dairy Sci. 2012;95(2):609-13. [Link] [DOI:10.3168/jds.2011-4445]
Arima K, Yu J, Iwasaki S, Tamura G. Milk-clotting enzyme from microorganisms: V. purification and crystallization of Mucor rennin from Mucor pusillus var. Lindt. Appl Microbiol. 1968;16(11):1727-33. [Link]
Yada RY, Nakai Sh. Use of principal component analysis to study the relationship between physical/chemical properties and the milk-clotting to proteolysis activity ratio of some aspartyl proteinases. J Agric Food Chem. 1986;34(4):675-9. [Link] [DOI:10.1021/jf00070a021]
Khaled HB, Ghorbel-Bellaaj O, Hmidet N, Jellouli K, El-Hadj Ali N, Ghorbel S, et al. A novel aspartic protease from the viscera of Sardinelle (Sardinella aurita): Purification and characterisation. Food Chem. 2011;128(4):847-53. [Link] [DOI:10.1016/j.foodchem.2011.03.104]
Sousa MJ, Malcata FX. Proteolysis of ovine and caprine caseins in solution by enzymatic extracts from flowers of Cynara cardunculus. Enzyme Microb Technol. 1998;22(5):305-14. [Link] [DOI:10.1016/S0141-0229(97)00173-7]
Guinee TP, Fox PF. Salt in cheese: Physical, chemical and biological aspects. In: Fox PF, Mc Sweeney PLH, Cogan TM, Guinee TP, editors. Cheese: Chemistry, physics and microbiology. 1st Volume. Cambridge MA: Academic Press; 2004. pp. 207-59. [Link] [DOI:10.1016/S1874-558X(04)80069-1]
Voorhorst WG, Warner A, De Vos WM, Siezen RJ. Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Protein Eng. 1997;10(8):905-14. [Link] [DOI:10.1093/protein/10.8.905]
Hsiao NW, Chen Y, Kuan YC, Lee YC, Lee SK, Chan HH, et al. Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. Electron J Biotechnol. 2014;17(2):89-94. [Link] [DOI:10.1016/j.ejbt.2014.02.002]