بررسی اثر نانوذره Fe/SDS بر میزان تولید بیوسورفاکتانت حاصل از باکتری سودوموناس آئروژینوزا برای کاربرد در صنایع نفتی

نویسندگان

1 گروه بیوتکنولوژی، دانشکده علوم و فناوری‌های نوین، واحد علوم دارویی، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه پژوهش میکروبیولوژی و بیوتکنولوژی، پژوهشگاه صنعت نفت، تهران، ایران

3 گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، ایران

چکیده
بیوسورفکتانت‌ها ترکیبات کاهش‌دهنده کشش سطحی بوده که توسط طیف گسترده‌ای از میکروارگانیزم‌ها تولید می‌شوند. ﺍﻳﻦ ﺗﺮﮐﻴﺒﺎﺕ سبب ﺗﺴﻬﻴﻞ ﺩﺭ ﺟﺬﺏ ﺳﻮﺑﺴﺘﺮﺍﻫﺎی ﻏﻴﺮﻗﺎﺑﻞ ﺣﻞ توسط سلول‌های میکروبی می‌ﺷﻮند. ارزشمندترین جنبه کاربردی بیوسورفاکتانت‌ها به‌ویژه رامنولیپید حاصل از سودوموناس آئروژینوزا مربوط به صنعت نفت بوده که به‌منظور تسهیل استخراج و انتقال نفت خام و پاکسازی نفت‌کش‌ها می‌تواند استفاده شود. هدف پژوهش تجربی حاضر بررسی اثر نانوذره Fe/SDS بر میزان تولید رامنولیپید حاصل از سودوموناس آئروژینوزا در محیط کشت ملاس بود. برای این منظور از غلظت‌های مختلف یک‌، ۵۰۰ و ۱۰۰۰میلی‌گرم بر لیتر نانوذره Fe/SDS استفاده شده است. در بین سایر غلظت‌های استفاده‌شده، غلظت یک‌میلی‌گرم بر لیتر از نانوذره Fe/SDS دارای بهترین میزان اثر بر میزان رشد باکتری و در نتیجه میزان تولید بیوسورفاکتانت بوده است. به‌طوری که سبب افزایش ۲۳/۲۱% رشد سلول‌ها شده که در نتیجه این تعداد از سلول‌ها سبب افزایش تولید بیوسورفاکتانت به میزان ۲۰/۷۳% در مقایسه با نمونه کنترل شد. لازم به ذکر است افزایش غلظت این نانوذره از یک‌میلی‌گرم بر لیتر به ۵۰۰ و ۱۰۰۰میلی‌گرم بر لیتر سبب کاهش تدریجی میزان رشد سلول‌ها و تولید بیوسورفاکتانت شد که این امر ممکن است نشان‌دهنده دارابودن اثرات منفی این نانوذره در غلظت‌های بالاتر است و همچنین بهترین میزان امولسیون‌کنندگی بیوسورفاکتانت مربوط به نمونه کنترل در روز سوم (۷۲ساعت) است. نتایج این پژوهش نشان می‌دهد با استفاده از غلظت‌های کم نانوذره Fe/SDS می‌توان میزان تولید رامنولیپید حاصل از سودوموناس آئروژینوزا را افزایش داد.

کلیدواژه‌ها

موضوعات


Amini F, Samadi N, Harande M, Naghdi M, Sharifan A. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa strains. Iran J Nutr Sci Food Technol. 2009;4(1):33-8. [Link]
Fracchia L, Cavallo M, Martinotti M, Banat IM. Biosurfactants and Bioemulsifiers Biomedical and Related Applications-Present Status and Future Potentials. In: Ghista DN. Biomedical Science, Engineering and Technology. Norderstedt: Books on Demand; 2012. pp. 325-70 [Link] [DOI:10.5772/23821]
Rikalovic MG, Cvijovic GG, Vrvic MM, Karadzic I. Production and characterization of rhamnolipids from Pseudomonas aeruginosa san-ai. J Serbian Chem Soc. 2012;77(1):27-42. [Link] [DOI:10.2298/JSC110211156R]
Singh V. Biosurfactant-isolation, production, purification & significance. Int J Sci Res Publ. 2012;2(7). [Link]
Bagheri Lotfaabad T, Shahceraghi F, Shooraj F. Assessment of antibacterial capability of rhamnolipids produced by two indigenous Pseudomonas aeruginosa strains. Jundishapur J Microbiol. 2013;6(1):29-35. [Link] [DOI:10.5812/jjm.2662]
Pereira J, Gudina E, Costa R, Vitorino R, Teixeira J, Coutinho J, Rodrigues L. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel. 2013;111:259-68. [Link] [DOI:10.1016/j.fuel.2013.04.040]
Amani H, Muller MM, Syldatk Ch, Hausmann R. Production of Microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol. 2013;170(5):1080-93. [Link] [DOI:10.1007/s12010-013-0249-4]
Kaskatep B, Yildiz S, Gumustas M, Ozkan SA. Biosurtactant production by Psedomonas aeroginosa in kefir and fish meal. Braz J Microbiol. 2015;46(3):855-9. [Link] [DOI:10.1590/S1517-838246320140727]
Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology. 2011;9:34. [Link] [DOI:10.1186/1477-3155-9-34]
Lia J, Vipulanandan C. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant. Mater Sci Eng. 2013;33(7):3909-15. [Link] [DOI:10.1016/j.msec.2013.05.026]
Liu J, Vipulanandan C, Cooper TF, Vipulanandan G. Effects of Fe nanoparticles on bacterial growth and biosurfactant production. J Nanopart Res. 2013;15:1405. [Link] [DOI:10.1007/s11051-012-1405-4]
Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol. 2014;10:14-48. [Link] [DOI:10.1186/1472-6750-14-48]
Fakruddin Md. Biosurfactant: Production and Application. J Pet Environ Biotechnol. 2012;3(4):124. [Link]
Gomathy C, Senthilkumar R. Production of Rhamnolipid boisurfactant from a marine Pseudomonas aeruginosa. Int J Res Environ Sci Technol. 2013;3(3):86-91. [Link]
Rosa C, Freire D, Ferraz H. Biosurfactant microfoam: Application in the removal of pollutants from soil. J Environ Chem Eng. 2015;3(1):89-94. [Link] [DOI:10.1016/j.jece.2014.12.008]
Rocha CA, Pedregosa AM, Laborda F. Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by pseudomonas aeruginosa ATCC 55925. AMB Express 2011;1(1):9. [Link] [DOI:10.1186/2191-0855-1-9]
Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61(1):47-64. [Link]
Tabatabaee A, Mazaheri M, Noohi A, Sajadian VA. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs. Iranian J Environ Health Sci Eng. 2005;2(1):6-12. [Link]
Sahebnazar Z, Mowla D, Karimi GH. Enhancement of Pseudomonas Aeruginosa Growth and Rhamnolipid Production Using Iron-Silica Nanoparticles in Low-Cost Medium. J Nanostructures. 2018;8(1):1:10. [Link]
Bagheri Lofabad T, Partovi M, Bahmaei M. Rhamnolipid biosurfactant production by Pseudomonas aeruginosa MR01 using vegetable oil refinery wastes. New Cell Mol Biotechnol J. CMBJ. 2013;3(9):91-9. [Persian] [Link]
Mostafapour M, Ahmady- Abchin S, Saffari M. Isolation and identification of biosurfactant-producing strains from the genus Acinetobacter spp and antibacterial effects of biosurfactant produced on some of the negative and gram-positive bacteria in vitro. New Cell Mol Biotechnol J. 2014;4(14):79-91. [Persian] [Link]
EL-Amine Bendaha M, Mebrek S, Mostefa N, Abdelkrim T, Ahmed Belaouni H, Bouziane A. Isolation and comparison of Rhamnolipids production in Pseudomonas aeruginosa P.B:2 and Pseudomonas fluorescens P.V:10. Open Access Sci Rep. 2012;1(12). [Link]
Bhawsar NA, Singh M. Isolation And Characterization Of Pseudomonas aeruginosa From Waste Soybean Oil As Biosurfactants Which Enhances Biodegradation Of Industrial Waste With Special Reference To Kosmi Dam, Betul District, (M.P.). Int J Adv Res. 2014;2(6):778-83. [Link]
Cristobal E, Castanon M, Martinez-Martinez RE, Rodriguez L, Marin P, Macias R, Ruiz F. Antimicrobial sensibility of Streptococcus mutans serotypes to silver nanoparticles. Mater Sci Eng C. 2012;32(4):896-901. [Link] [DOI:10.1016/j.msec.2012.02.009]