ساخت و ارزیابی نانوسامانه جدید تهیه‌شده از کانجوگه کورکومین- دندریمر و مطالعه ثاثیر آن بر رده سلول‌های سرطانی و نرمال

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه نانوبیوتکنولوژی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه فارماسیوتیکال بیومتریال، دانشکده داروسازی، دانشگاه علوم پزشکی زنجان، زنجان، ایران

3 گروه ژنتیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

4 پژوهشکده بیوتکنولوژی کشاورزی ایران، کرج، ایران

5 گروه سم‌شناسی و فارماکولوژی، دانشکده داروسازی، دانشگاه شهید بهشتی، تهران، ایران

چکیده
آثار آنتی‌اکسیدانی، ضدسرطانی، ضدالتهاب و ضدمیکروب کورکومین دلایلی بر ارزشمندی این ماده در تحقیقات دارویی و نقش آن در بهداشت عمومی انسان است. اثر ضدسرطانی کورکومین ناشی از تاثیر این دارو بر دامنه‌ای از مسیرهای سلولی و مولکولی درگیر در سرطان است. با این وجود، محلولیت کم، زیست‌دسترسی پایین و متابولیزم سریع آن اثر نامناسبی بر خصوصیت درمانی آن گذاشته است. در این تحقیق، به‌واسطه کانجوگه‌کردن مولکول‌های کورکومین به ساختار دندریمری نسل چهار (پلی‌آمیدوآمین)، یک حامل نانوابعاد مناسب تهیه شد. مشخصه‌یابی نانوسامانه و تایید فرآیند کانجوگه‌شدن به‌وسیله روش‌های FT-IR و ۱H-NMR انجام شد. اندازه و بار سطحی ذرات با دستگاه DLS مورد ارزیابی قرار گرفت. میزان بارگذاری مولکول‌های کورکومین روی نانوسامانه بررسی شد و در ادامه آزمایش‌های سلولی از جمله سمیت، ROS سلولی و آپاپتوز به‌وسیله آزمون MTT و تکنیک فلوسایتومتری مورد ارزیابی قرار گرفت. نتایج این تحقیق عمل کانجوگه‌شدن کورکومین را تایید کرد و ذرات به‌دست‌آمده اندازه تقریبی ۱۰۰نانومتر داشتند. نتایج نشان داد که میزان بارگذاری کورکومین در این نانوسامانه حدود چهار مولکول به‌ازای هر مولکول دندریمر است. آزمایش‌های سلولی نشان داد که میزان سمیت، ROS سلولی و آپاپتوز ناشی از نانوحامل دندریمری در مقایسه با کورکومین آزاد بیشتر بوده است. عملکرد بهتر نانوسامانه دندریمری به‌واسطه بهبود خواص فیزیکوشیمیایی و افزایش محلولیت کورکومین بوده است. در مجموع، این نانوحامل به‌عنوان یک سامانه هوشمند و کارآمد می‌تواند برای رسانش داروهای آب‌گریز به سلول‌های سرطانی در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine. 2009;4:1-7. [Link] [DOI:10.2147/IJN.S4241]
Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199-225. [Link] [DOI:10.1016/j.canlet.2008.03.009]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1-75. [Link] [DOI:10.1007/978-0-387-46401-5_1]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1-15. [Link] [DOI:10.2147/IJN.S52634]
Thilakarathna SH, Rupasinghe HP. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5(9):3367-87. [Link] [DOI:10.3390/nu5093367]
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, et al. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev. 2018;47(2):514-32. [Link] [DOI:10.1039/C7CS00550D]
Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem. 2015;26(7):1198-211. [Link] [DOI:10.1021/acs.bioconjchem.5b00031]
Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40(1):173-90. [Link] [DOI:10.1039/B901839P]
Dufes C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57(15):2177-202. [Link] [DOI:10.1016/j.addr.2005.09.017]
Jain K, Kesharwani P, Gupta U, Jain N. Dendrimer toxicity: Let's meet the challenge. Int J Pharm. 2010;394(1-2):122-42. [Link] [DOI:10.1016/j.ijpharm.2010.04.027]
Nomani A, Haririan I, Rahimnia R, Fouladdel S, Gazori T, Dinarvand R, et al. Physicochemical and biological properties of self-assembled antisense/poly (amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio. Int J Nanomedicine. 2010;5:359-69. [Link] [DOI:10.2147/IJN.S9070]
Tahmasebi Birgani M, Erfani-Moghadam V, Babaei E, Najafi F, Zamani M, Shariati M, et al. Dendrosomal nano-curcumin; The novel formulation to improve the anticancer properties of curcumin. Prog Biol Sci. 2015;5(2):143-58. [Link]
Erfani-Moghadam V, Nomani A, Zamani M, Yazdani Y, Najafi F, Sadeghizadeh M. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Int J Nanomedicine. 2014;9:5541-54. [Link] [DOI:10.2147/IJN.S63762]
Dinari A, Moghadam TT, Abdollahi M, Sadeghizadeh M. Synthesis and characterization of a Nano-Polyplex system of GNRs-PDMAEA-pDNA: an inert self-catalyzed degradable carrier for facile gene delivery. Sci Rep. 2018;8(8112):1-12. [Link] [DOI:10.1038/s41598-018-26260-4]
Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365-83. [Link] [DOI:10.1016/j.biomaterials.2013.12.090]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787-809. [Link] [DOI:10.1016/j.bcp.2007.08.016]
Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J. 2009;11(3):495-510. [Link] [DOI:10.1208/s12248-009-9128-x]
Lim J, Simanek EE. Synthesis of water-soluble dendrimers based on melamine bearing 16 paclitaxel groups. Org Lett. 2008;10(2):201-4. [Link] [DOI:10.1021/ol7024907]
Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25(1):231-41. [Link] [DOI:10.1016/j.tiv.2010.11.008]
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Ann Rev Pathol. 2010;5:253-95. [Link] [DOI:10.1146/annurev.pathol.4.110807.092250]
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579-91. [Link] [DOI:10.1038/nrd2803]
Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2(1):17. [Link] [DOI:10.1186/2049-3002-2-17]
Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590-611. [Link] [DOI:10.1016/j.bcp.2008.08.008]
Bengmark S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. J Parenter Enteral Nutr. 2006;30(1):45-51. [Link] [DOI:10.1177/014860710603000145]
López‐Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. 2008;52 Suppl 1:S103-27. [Link] [DOI:10.1002/mnfr.200700238]
Wallace DC. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363-74. [Link] [DOI:10.1101/sqb.2005.70.035]
Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9(6):447-64. [Link] [DOI:10.1038/nrd3137]
Duvoix A, Morceau F, Delhalle S, Schmitz M, Schnekenburger M, Galteau MM, et al. Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem Pharmacol. 2003;66(8):1475-83. [Link] [DOI:10.1016/S0006-2952(03)00501-X]
Thangapazham RL, Sharma A, Maheshwari RK. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J. 2006;8(3):E443-9. [Link] [DOI:10.1208/aapsj080352]
Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med. 2016;241(12):1281-95. [Link] [DOI:10.1177/1535370216641787]
Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283(5407):1482-8. [Link] [DOI:10.1126/science.283.5407.1482]
Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radic Biol Med. 2008;45(10):1403-12. [Link] [DOI:10.1016/j.freeradbiomed.2008.08.014]
Park K, Lee JH. Photosensitizer effect of curcumin on UVB-irradiated HaCaT cells through activation of caspase pathways. Oncol Rep. 2007;17(3):537-40. [Link] [DOI:10.3892/or.17.3.537]
Gao X, Deeb D, Jiang H, Liu YB, Dulchavsky SA, Gautam SC. Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria. J Exp Ther Oncol. 2005;5(1):39-48. [Link]
Karmakar S, Banik NL, Patel SJ, Ray SK. Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett. 2006;407(1):53-8. [Link] [DOI:10.1016/j.neulet.2006.08.013]