تعیین اثر سمیت داروی مهارکننده رقابتی ATP در سرطان آناپلاستیک تیروئید براساس مشخصات سلولی بر پایه روش کشت سه‌بعدی

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه زیست‌شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 مرکز تحقیقات غدد و متابولیسم، پژوهشگاه علوم غدد و متابولیسم، دانشگاه علوم پزشکی تهران، تهران، ایران

3 گروه علوم آزمایشگاهی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی البرز، تهران، ایران

4 گروه میکروب‌شناسی، دانشکده زیست‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

5 گروه هماتولوژی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
اهداف: سیستم‌های کشت سه‌بعدی به‌دلیل شباهت‌های مورفولوژیکی به "محیط زنده" اهمیت بسیاری در حوزه مطالعات داروهای ضدسرطان دارند. در این مقاله سعی بر آن است که میزان سمیت داروی BI-۸۴۷۳۲۵ روی کشت سه‌بعدی دو رده سلولی متفاوت سرطان آناپلاستیک سنجیده شود و پیامد آن به‌عنوان یکی از اهداف یافتن تفاوت در میزان پاسخ‌دهی بر مبنای مشخصات سلول‌ها مورد بررسی قرار گیرد.

مواد و روش‌ها: در این مطالعه پس از آماده‌سازی داربست آلژینات، دو رده سلولی سرطان آناپلاستیک تیروئید C۶۴۳ و SW۱۷۳۶ انکپسوله و به‌مدت یک هفته کشت شدند. پس از گذشت ۲۴ساعت از کشت سلول‌ها روی داربست، ارزیابی توانایی زنده‌ماندن سول‌ها در حضور دوزهای مختلف (۱ تا ۶۴میکرومولار) داروی BI-۸۴۷۳۲۵ توسط تست ۳- (۴ و ۵ دی‌متیل‌تیازول-۲- وای‌ ال)- ۲ و ۵- دی‌فنیل‌تترازولیوم‌بروماید (MTT) به عمل آمد. به‌منظور بررسی و مقایسه تکثیر سلول‌ها در دوز موثر دارو، پس از ۲۴ساعت از اثر دارو در غلظت مربوطه برای هر یک از رده‌های سلولی رنگ‌آمیزی توسط کربوکسی‌فلورسئین ان- هیدروکسی‌سوکسینیمیدیل استر (CFSE) انجام شد.

یافته‌ها: اثر سمیت داروی BI-۸۴۷۳۲۵ در رده‌های مختلف سرطان آناپلاستیک تیروئید متفاوت است. دوز موثر دارو پس از گذشت ۲۴ساعت برای رده C۶۴۳ در ۲۵میکرومولار و در مورد رده SW۱۷۳۶ در ۴۳میکرومولار محاسبه شد. رنگ‌آمیزی توسط CFSE و مقایسه تکثیر سلول‌ها در دوز موثر دارو، یافته فوق را تائید کرد.

نتیجه‌گیری: در مجموع، مطالعه حاضر نشان داد که اثر سمیت دارو در رده‌های مختلف سرطان آناپلاستیک تیروئید متفاوت است. اهمیت این موضوع در کنار توجه به مطالعات کشت سه‌بعدی می‌تواند محققان را در طراحی مطالعات تکمیلی بعدی در جهت دستیابی به مناسب‌ترین دارو با تاثیرگذارترین دوز کمک کند.

کلیدواژه‌ها

موضوعات


Denaro N, Nigro CL, Russi EG , Merlano MC. The role of chemotherapy and latest emerging target therapies in anaplastic thyroid cancer. Onco Targets Ther. 2013;9(1):1231-41. [Link] [DOI:10.2147/OTT.S46545]
Perri F, Pezzullo L, Chiofalo MG, Lastoria S, Di Gennaro F, Scarpati GD, et al. Targeted therapy: A new hope for thyroid carcinomas. Crit Rev Oncoly Hematol. 2015;94(1):55-63. [Link] [DOI:10.1016/j.critrevonc.2014.10.012]
Rusconi P, Caiola E, Broggini M. RAS/RAF/MEK inhibitors in oncology. Curr Med Chem. 2012;19(8):1164-76. [Link] [DOI:10.2174/092986712799320510]
Patel JN. Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives. Pharmacogenomics Pers Med. 2016;9:65. [Link] [DOI:10.2147/PGPM.S62918]
Smith N, Nucera C. Personalized therapy in patients with anaplastic thyroid cancer: Targeting genetic and epigenetic alterations. J Clin Endocrinol Metab. 2015;100(1):35-42. [Link] [DOI:10.1210/jc.2014-2803]
Liu D, Xing J, Trink B, Xing M. BRAF mutation‐selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic‐potentiated synergism with the mTOR inhibitor temsirolimus. Int J Cancer. 2010;127(12):2965-73. [Link] [DOI:10.1002/ijc.25304]
Liu D, Xing M. Potent inhibition of thyroid cancer cells by the MEK inhibitor PD0325901 and its potentiation by suppression of the PI3K and NF-κB pathways. Thyroid. 2008;18(8):853-64. [Link] [DOI:10.1089/thy.2007.0357]
McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46(1):249-79. [Link] [DOI:10.1016/j.advenzreg.2006.01.004]
Steelman LS, Chappell WH, Abrams SL, Kempf CR, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 2011;3(3):192-222. [Link] [DOI:10.18632/aging.100296]
Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: State of the art. Tissue Eng Part B Rev. 2008;14(1):61-86. [Link] [DOI:10.1089/teb.2007.0150]
Dhiman HK, Ray AR, Panda AK. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials. 2005;26(9):979-86. [Link] [DOI:10.1016/j.biomaterials.2004.04.012]
Godugu Ch, Patel AR, Desai U, Andey T, Sams A, Singh M. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS One. 2013;8(1):e53708. [Link] [DOI:10.1371/journal.pone.0053708]
Smith BH, Gazda LS, Conn BL, Jain K, Asina S, Levine DM, et al. Three-dimensional culture of mouse renal carcinoma cells in agarose macrobeads selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties. Cancer Res. 2011;71(3):716-24. [Link] [DOI:10.1158/0008-5472.CAN-10-2254]
Onoda N, Nakamura M, Aomatsu N, Noda S, Kashiwagi S, Hirakawa K. Establishment, characterization and comparison of seven authentic anaplastic thyroid cancer cell lines retaining clinical features of the original tumors. World J Surg. 2014;38(3):688-95. [Link] [DOI:10.1007/s00268-013-2409-7]
Nagayama Y, Yokoi H, Takeda K, Hasegawa M, Nishihara E, Namba H, et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J Clin Endocrinol Metab. 2000;85(11):4081-6. [Link] [DOI:10.1210/jcem.85.11.6941]
Reddi HV, Kumar A, Kulstad R. Anaplastic thyroid cancer an overview of genetic variations and treatment modalities. Adv Genom Genet. 2015;2015(5):43-52. [Link] [DOI:10.2147/AGG.S53448]
Are Ch, Shaha AR. Anaplastic thyroid carcinoma: Biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol. 2006;13(4):453-64. [Link] [DOI:10.1245/ASO.2006.05.042]
Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318-29. [Link] [DOI:10.1093/hmg/ddu749]
Haycock JW. 3D cell culture: A review of current approaches and techniques. In: Haycock JW, editor. 3D cell culture: Methods and protocols. Totowa: Humana Press; 2011. pp. 1-15. [Link] [DOI:10.1007/978-1-60761-984-0_1]
Liu J, Zhang L, Yang Z, Zhao X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed. 2011;6:2143-53. [Link] [DOI:10.2147/IJN.S24038]
Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69-70:29-41. [Link] [DOI:10.1016/j.addr.2014.03.001]
Liu D, Hou P, Liu Z, Wu G, Xing M. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 2009;69(18):7311-9. [Link] [DOI:10.1158/0008-5472.CAN-09-1077]
Pilli T, Prasad KV, Jayarama Sh, Pacini F, Prabhakar BS. Potential utility and limitations of thyroid cancer cell lines as models for studying thyroid cancer. Thyroid. 2009;19(12):1333-42. [Link] [DOI:10.1089/thy.2009.0195]
Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93(11):4331-41. [Link] [DOI:10.1210/jc.2008-1102]
Meireles AM, Preto A, Rocha AS, Rebocho AP, Máximo V, Pereira-Castro I, et al. Molecular and genotypic characterization of human thyroid follicular cell carcinoma-derived cell lines. Thyroid. 2007;17(8):707-15. [Link] [DOI:10.1089/thy.2007.0097]
Zhang L, Zhang Y, Mehta A, Boufraqech M, Davis S, Wang J, et al. Dual inhibition of HDAC and EGFR signaling with CUDC-101 induces potent suppression of tumor growth and metastasis in anaplastic thyroid cancer. Oncotarget. 2015;6(11):9073-85. [Link] [DOI:10.18632/oncotarget.3268]
Haghpanah V, Fallah P, Tavakoli R, Naderi M, Samimi H, Soleimani M, et al. Antisense-miR-21 enhances differentiation/apoptosis and reduces cancer stemness state on anaplastic thyroid cancer. Tumor Biol. 2016;37(1):1299-308. [Link] [DOI:10.1007/s13277-015-3923-z]
Samimi H, Zaki Dizaji M, Ghadami M, Shahzadeh Fazeli A, Khashayar P, Soleimani M, et al. Essential genes in thyroid cancers: Focus on fascin. J Diabetes Metab Disord. 2013;12(1):32. [Link] [DOI:10.1186/2251-6581-12-32]
Guerra A, Di Crescenzo V, Garzi A, Cinelli M, Carlomagno Ch, Tonacchera M, et al. Genetic mutations in the treatment of anaplastic thyroid cancer: A systematic review. BMC Surg. 2013;13(Suppl 2):S44. [Link] [DOI:10.1186/1471-2482-13-S2-S44]