استنتاج شبکه هم‌بیانی ژن‌ها از روی ویژگی‌های منتسب‌شده به آنها به‌وسیله شبکه‌های عصبی مصنوعی

نوع مقاله : پژوهشی اصیل

نویسنده

گروه ریاضی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

چکیده
فرآیند شارش اطلاعات از DNA به پروتین‌ها که به بیان ژن موسوم است، یک فرآیند پایه‌ای در زیست‌شناسی است. تنظیم بیان ژن‌ها پاسخ سلول‌ها به محرک‌های فراوانی بوده و برای آنها حیاتی است. ژن‌ها با بیان مشابه در یک سری آزمایش مناسب، ژن‌های هم‌بیان، به‌طور معمول توسط تنظیم‌کننده‌های یکسان مدیریت می‌شوند و باز هم به‌طور معمول تغییر در بیان آنها پاسخ به محرک‌های یکسانی هستند.

در این مقاله ما یک روش جدید ارایه کرده‌ایم که داده‌های مرتبط با بیان و هستی‌شناسی ژن‌ها را به‌کارگرفته و به‌وسیله آنها ژن‌های هم‌بیان را یافته و شبکه هم‌بیانی ژن‌ها را ایجاد می‌کند.

در ابتدای روش ایجادشده یک شبکه عصبی مصنوعی روابط بین خصایص منتسب‌شده به ژن‌ها توسط پروژه هستی‌شناسی ژن‌ها و میزان مشابهتی که در بیان با یکدیگر دارند را فرا می‌گیرد. به‌سادگی، خصایص گردآوری‌شده توسط هستی‌شناسی ژن‌ها شامل عملکرد، فرآیند، و محل فعالیت ژن‌ها هستند. بعد از پایان مرحله یادگیری، شبکه عصبی مصنوعی قادر است ژن‌های هم‌بیان را کشف کند. به‌علاوه، شبکه‌های زیستی از چندین گروه ژنی به‌هم‌پیوسته ساخته شده‌اند، به همین دلیل یافتن این گروه‌ها می‌تواند کیفیت شبکه‌های هم‌بیانی ساخته شده را بالا ببرد. بنابراین، در گام بعدی روش، یک شبکه عصبی مصنوعی دیگر گروه ژن‌ها را از روی همان خصایص هستی‌شناسی پیدا می‌کند. تحلیل‌های ما نشان دادند که نتایج روش ایجادشده شباهت زیادی به نتایج آزمایشگاهی دارد. همچنین، ما نشان دادیم که شبکه‌های هم‌بیانی ساخته‌شده توسط آن مشابه هم‌ارزهای زیستی و حتی مشابه آنهایی است که با داده‌های بدون نقص ساخته شده‌اند. درنهایت، ما از زبان C++ برای نوشتن روش استفاده کرده‌ایم و برنامه آن در دسترس است.

کلیدواژه‌ها

موضوعات


Reece JB, Urry LA, Cain ML, Jackson RB, Wasserman SA, Minorsky PV. Campbell biology. 9th Edition. San Francisco: Benjamin Cummings; 2010. [Link]
Lodish HF, Berk A, Kaiser CA, Krieger M, Scott MP. Molecular cell biology. 6th Edition. New York: Macmillan Higher Education; 2007. [Link]
De Jong H. Modeling and simulation of genetic regulatory systems: A literature review. J Comput Biol. 2002;9(1):67-103. [Link] [DOI:10.1089/10665270252833208]
Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R. Gene regulatory network inference: Data intgrtion in dynamic models-a review. Biosystems. 2009;96(1):86-103. [Link] [DOI:10.1016/j.biosystems.2008.12.004]
Reverter A, Chan EKF. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics. 2008;24(21):2491-7. [Link] [DOI:10.1093/bioinformatics/btn482]
De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Micro-biol. 2010;8(10):717-29. [Link] [DOI:10.1038/nrmicro2419]
Kabir M, Noman N, Iba H. Reverse engineering gene regulatory network from microarray data using linear time-variant model. BMC Bioinform. 2010;11(1):S56. [Link] [DOI:10.1186/1471-2105-11-S1-S56]
Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci. 2010;107(14):6286-91. [Link] [DOI:10.1073/pnas.0913357107]
Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale gene networks. PLoS One. 2012;7(1):e29348. [Link] [DOI:10.1371/journal.pone.0029348]
Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC Bioinform. 2007;8(6):S9. [Link] [DOI:10.1186/1471-2105-8-S6-S9]
Pavesi G, Valentini G. Classification of co-expressed genes from DNA regulatory regions. Inf Fusion. 2009;10(3):233-41. [Link] [DOI:10.1016/j.inffus.2008.11.005]
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776. [Link] [DOI:10.1371/journal.pone.0012776]
Ruan J, Dean AK, Zhang W. A general co-expression network-based approach to gene expression analy-sis: Comparison and applications. BMC Syst Biol. 2010;4:8. [Link] [DOI:10.1186/1752-0509-4-8]
Raman K. Construction and analysis of protein-protein interaction networks. Autom Exp. 2010;2(1):2. [Link] [DOI:10.1186/1759-4499-2-2]
Martin Sh, Zhang Z, Martino A, Faulon JL. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics. 2007;23(7):866-74. [Link] [DOI:10.1093/bioinformatics/btm021]
Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell. 2004;117(2):185-98. [Link] [DOI:10.1016/S0092-8674(04)00304-6]
Mahdevar G, Nowzari-Dalini A, Sadeghi M. Inferring gene correlation networks from transcription factor binding sites. Genes Genet Syst. 2013;88(5):301-9. [Link] [DOI:10.1266/ggs.88.301]
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unifica-tion of biology. Nat Genet. 2000;25(1):25-9. [Link] [DOI:10.1038/75556]
Rhee SY, Wood V, Dolinski K, Draghici S. Use and misuse of the gene ontology annotations. Nat Rev Genet. 2008;9(7):509-15. [Link] [DOI:10.1038/nrg2363]
Allocco DJ, Kohane IS, Butte AJ. Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinform. 2004;5(1):18. [Link] [DOI:10.1186/1471-2105-5-18]
Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinform. 2007;8(1):299. [Link] [DOI:10.1186/1471-2105-8-299]
Roy S, Bhattacharyya DK, Kalita JK. Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform. 2014;15(Suppl 7):S10. [Link] [DOI:10.1186/1471-2105-15-S7-S10]
Sevilla JL, Segura V, Podhorski A, Guruceaga E, Mato JM, Martinez-Cruz LA, et al. Correlation between gene expression and GO semantic similarity. IEEE ACM Trans Comput Biol Bioinform. 2005;2(4):330-8. [Link] [DOI:10.1109/TCBB.2005.50]
Wang H, Azuaje F, Bodenreider O, Dopazo J. Gene expression correlation and gene ontology-based simi-larity: An assessment of quantitative relationships. Symposium on Computational Intelligence in Bioinformat-ics and Computational Biology, 7-8 October, 2004, La Jolla, California, USA. Piscataway: IEEE; 2004. pp. 25-31. [Link]
Resnik P. Semantic similarity in a taxonomy: An information-based measure and its application to prob-lems of ambiguity in natural language. J Artif Intell Res. 1999;11:95-130. [Link] [DOI:10.1613/jair.514]
Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics. 2007;23(10):1274-81. [Link] [DOI:10.1093/bioinformatics/btm087]
Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved ge-netic modules. Science. 2003;302(5643):249-55. [Link] [DOI:10.1126/science.1087447]
Kohonen T. Self-organization and associative memory. 3rd Edition. Heidelberg: Springer; 1989. [Link] [DOI:10.1007/978-3-642-88163-3]
Shalev-Shwartz Sh, Ben-David Sh. Understanding machine learning: From theory to algorithms. 1st Edi-tion. Cambridge: Cambridge University Press; 2014. [Link]
Alpaydin E. Introduction to machine learning. 2nd Edition. Cambridge: MIT Press; 2010. [Link]
Han J, Kamber M. Data mining: Concepts and techniques. 2nd Edition. Amsterdam: Elsevier; 2006. [Link]
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd Edition. New York: Springer; 2009. [Link] [DOI:10.1007/978-0-387-84858-7]
Werbos PJ. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Cam-bridge: Harvard University; 1974. [Link]
Barabasi AL, Oltvai ZN. Network biology: Understanding the cell's functional organization. Nat Rev Genet. 2004;5(2):101-13. [Link] [DOI:10.1038/nrg1272]
Bergmann S, Ihmels J, Barkai N. Similarities and differences in genome-wide expression data of six organ-ism. PLoS Biol. 2004;2(1):e9. [Link] [DOI:10.1371/journal.pbio.0020009]
Ma H, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics. 2003;19(2):270-7. [Link] [DOI:10.1093/bioinformatics/19.2.270]
Kim H, Shin J, Kim E, Kim H, Hwang S, Shim JE, et al. YeastNet v3: A public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae. Nucleic Acids Res. 2013;42(D1):D731-6. [Link] [DOI:10.1093/nar/gkt981]
Martínez-Ballesteros M, Nepomuceno-Chamorro IA, Riquelme JC. Discovering gene association networks by multi-objective evolutionary quantitative association rules. J Comput Syst Sci. 2014;80(1):118-36. [Link] [DOI:10.1016/j.jcss.2013.03.010]
Haykin S. Neural networks: A comprehensive foundation. 2nd Edition. New Jersey: Pearson Education Canada; 1998. [Link]
Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics. 2007;23(13):1640-7. [Link] [DOI:10.1093/bioinformatics/btm163]
Soinov LA, Krestyaninova MA, Brazma A. Towards reconstruction of gene networks from expression data by supervised learning. Genome Biol. 2003;4(1):R6. [Link] [DOI:10.1186/gb-2003-4-1-r6]
Nepomuceno-Chamorro IA, Aguilar-Ruiz JS, Riquelme JC. Inferring gene regression networks with model trees. BMC Bioinform. 2010;11:517. [Link] [DOI:10.1186/1471-2105-11-517]
Bulashevska S, Eils R. Inferring genetic regulatory logic from expression data. Bioinformatics. 2005;21(11):2706-13. [Link] [DOI:10.1093/bioinformatics/bti388]
Ponzoni I, Azuaje F, Augusto J, Glass D. Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning. IEEE ACM Trans Comput Biol Bioin-form. 2007;4(4):624-34. [Link] [DOI:10.1109/tcbb.2007.1049]