نقش پروبیوتیک‌ها در پیشگیری و کنترل بیماری مولتیپل‌اسکلروزیس

نوع مقاله : نامه به سردبیر

نویسندگان

کلینیک ژنتیک دکتر فرهود، تهران، ایران

چکیده
مقدمه: از آنجایی که سیستم گوارش، نقش بسیار مهمی در کارآیی سیستم ایمنی دارد، نمی‌توان نقش آن را در کنترل و یا درمان بیماری‌های خودایمنی نادیده گرفت. از این رو تقویت روده که بخش زیادی از عملکرد گوارش به آن وابسته است، می‌تواند در این مسیر موثر باشد. همچنین به دلیل اینکه روده علاوه‌بر عمل هضم در سیستم ایمنی نقش مهمی ایفا می‌کند، می‌توان با متعادل نگه‌داشتن باکتری‌های آن، تا حدودی به عملکرد صحیح سیستم ایمنی کمک کرد. در این راه، پروبیوتیک‌ها و پربیوتیک‌ها می‌توانند مفید واقع شوند که در مطالعه حاضر به بررسی این موضوع پرداخته شد.

نتیجه‌گیری: مصرف پروبیوتیک‌ها در پیشگیری و کنترل بیماری مولتیپل‌اسکلروزیس نقش موثری دارد.

کلیدواژه‌ها

موضوعات


Freedman SN, Shahi SK, Mangalam AK. The "gut feeling": Breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics. 2018;15(1):109-25. [Link] [DOI:10.1007/s13311-017-0588-x]
Yen EF. The different drummer: Non-traditional therapeutic approaches. In: Cohen RD, editor. Inflammatory bowel disease. Cham: Humana Press; 2017. pp. 205-16. [Link] [DOI:10.1007/978-3-319-53763-4_12]
Løken-Amsrud KI, Holmøy T, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, et al. Vitamin D and disease activity in multiple sclerosis before and during interferon-β treatment. Neurology. 2012;79(3):267-73. [Link] [DOI:10.1212/WNL.0b013e31825fdf01]
McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24-31. [Link] [DOI:10.1111/imm.12231]
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. [Link] [DOI:10.7554/eLife.01202]
Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. [Link] [DOI:10.1371/journal.pone.0137429]
Fernández-Paredes L, De Diego RP, De Andrés C, Sánchez-Ramón S. Close encounters of the first kind: Innate sensors and multiple sclerosis. Mol Neurobiol. 2017;54(1):101-14. [Link] [DOI:10.1007/s12035-015-9665-5]
Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, et al. A microbial perspective of human developmental biology. Nature. 2016;535(7610):48-55. [Link] [DOI:10.1038/nature18845]
Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MM, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. [Link] [DOI:10.1038/srep28484]
Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75-84. [Link] [DOI:10.1038/nature18848]
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451-63. [Link] [DOI:10.1016/j.cell.2013.11.024]
Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015. [Link] [DOI:10.1038/ncomms12015]
Lavasani Sh, Dzhambazov B, Nouri M, Fåk F, Buske S, Molin G, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One. 2010;5(2):e9009. [Link] [DOI:10.1371/journal.pone.0009009]
Wekerle H, Lassmann H. The immunology of inflammatory demyelinating disease. In: Compston A, McDonald I, Noseworthy J, Lassmann H, Miller D, Smith K, et al., editors. McAlpine's multiple sclerosis. 4th Edition. Amsterdam: Elsevier; 2006. [Link] [DOI:10.1016/B978-0-443-07271-0.50013-6]
Luckey D, Bastakoty D, Mangalam AK. Role of HLA class II genes in susceptibility and resistance to multiple sclerosis: Studies using HLA transgenic mice. J Autoimmun. 2011;37(2):122-8. [Link] [DOI:10.1016/j.jaut.2011.05.001]
Mangalam AK, Khare M, Krco C, Rodriguez M, David C. Identification of T cell epitopes on human proteolipid protein and induction of experimental autoimmune encephalomyelitis in HLA class II‐transgenic mice. Eur J Immunol. 2004;34(1):280-90. [Link] [DOI:10.1002/eji.200324597]
Mangalam AK, Rajagopalan G, Taneja V, David CS. HLA class II transgenic mice mimic human inflammatory diseases. Adv Immunol. 2008;97:65-147. [Link] [DOI:10.1016/S0065-2776(08)00002-3]
Mangalam A, Luckey D, Basal E, Jackson M, Smart M, Rodriguez M, et al. HLA-DQ8 (DQB1* 0302)-restricted Th17 cells exacerbate experimental autoimmune encephalomyelitis in HLA-DR3-transgenic mice. J Immunol. 2009;182(8):5131-9. [Link] [DOI:10.4049/jimmunol.0803918]
Mangalam AK, Luckey D, Giri Sh, Smart M, Pease LR, Rodriguez M, et al. Two discreet subsets of CD8 T cells modulate PLP91-110 induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmun. 2012;38(4):344-53. [Link] [DOI:10.1016/j.jaut.2012.02.004]
Sender R, Fuchs Sh, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337-40. [Link] [DOI:10.1016/j.cell.2016.01.013]
Surana NK, Kasper DL. The yin yang of bacterial polysaccharides: Lessons learned from B. fragilis PSA. Immunol Rev. 2012;245(1):13-26. [Link] [DOI:10.1111/j.1600-065X.2011.01075.x]
Wu GD, Chen J, Hoffmann Ch, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-8. [Link] [DOI:10.1126/science.1208344]
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614-20. [Link] [DOI:10.1093/bioinformatics/btt593]
Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, et al. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice. Arthritis Rheumatol. 2016;68(12):2878-88. [Link] [DOI:10.1002/art.39785]
Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. [Link] [DOI:10.1371/journal.pone.0137429]
Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487-95. [Link] [DOI:10.1038/mi.2010.29]
Okada H, Kuhn C, Feillet H, Bach JF. The 'hygiene hypothesis' for autoimmune and allergic diseases: An update. Clin Exp Immunol. 2010;160(1):1-9. [Link] [DOI:10.1111/j.1365-2249.2010.04139.x]
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229-41. [Link] [DOI:10.1016/j.cell.2004.07.002]
Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):5-15. [Link] [DOI:10.1007/s12016-011-8285-8]
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204-9. [Link] [DOI:10.1073/pnas.0909122107]