[1] Scott, B.W. (2013). Hippocampal Neurogenesis in the Kindling Model of Temporal Lobe Epilepsy. Experimental Neurology. 165 (1), 231-236.
[2] Van Nieuwenhuyse, B. (2015). Hippocampal deep brain stimulation for drug resistant epilepsy in a rodent model. Ghent University.
[3] DeGiorgio, C.M. and Krahl, S.E. ( 2013). Neurostimulation for drug-resistant epilepsy. Continuum: Lifelong Learning in Neurology. 19 (3), 743.
[4] Coffey, R.J. (2009). Deep brain stimulation devices: a brief technical history and review. Artificial organs. 33 (3), 208-220.
[5] Prince, D.A. (1978). Neurophysiology of epilepsy. Annual review of neuroscience. 1 (1), 395-415.
[6] Lossin, C., Wang, W., Thomas H., Vanoye, G., George, Jr. and Alfred, L. (2002). Molecular basis of an inherited epilepsy. Neuron. 34 (6), 877-884.
[7] De Falco, F., Bartiromo, U., Majello, L., Di Geronimo, G. and Mundo, P. ) 1992(. Calcium antagonist nimodipine in intractable epilepsy. Epilepsia. 33 (2), 343-345.
[8] Schumacher, T.B., Beck, H., Steinhauser, Ch., Schramm, J. and Elger, Ch. E. (1998). Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia. 39 (4), 355-363.
[9] Speckmann, E., H. Straub, and Köhling, R. (1993). Contribution of calcium ions to the generation of epileptic activity and antiepileptic calcium antagonism. Neuropsychobiology. 27 (3), 122-126.
[10] Kuak, W., Sobaniec, W., Wojtal, K. and Czuczwar, S. (2004). Calcium modulation in epilepsy. Pol J Pharmacol. 56 (1), 29-41.
[11] Kudin, A.P., Kudina, T. A., Seyfried, J., Vielhaber, S., Beck, H., Elger, Ch., E. and Kunz, W. S. (2002). Seizure‐dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. European Journal of Neuroscience. 15 (7), 1105-1114.
[12] Rajasekaran, K. (2005). Seizure-induced oxidative stress in rat brain regions: blockade by nNOS inhibition. Pharmacology Biochemistry and Behavior. 80 (2), 263-272.
[13] Nazıroğlu, M. and Övey, I. (2015). Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience,. 293 (1), 55-66.
[14] Arzimanoglou, A., Hirsch, E., Nehlig, A., Castelnau, P., Gressens, P. and de Vasconcelos, A. P. (2002). Epilepsy and neuroprotection: an illustrated review. Epileptic disorders. 4 (1), 173-182.
[15] Kamphuis, W. Huisman, E., Wadman, WJ., Bergkamp, FJ. and Da Silva, FH. L. (1989). Transient increase of cytoplasmic calcium concentration in the rat hippocampus after kindling-induced seizures. An ultrastructural study with the oxalate-pyro-antimonate technique. Neuroscience. 29 (3), 667-674.
[16] Orciani, M., Trubiani, O., Guarnieri, S., Ferrero, E. and Di Primio, R. (2008). CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of cellular biochemistry. 105 (3), 905-912.
[17] Fernandez, J., Deaglio, S., Donati, D., Beusan, I. S., Corno, F., Aranega, A., Forni, M., Falini, B. and Malavasi, F. (1998). Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. Journal of biological regulators and homeostatic agents. 12 (3), 81-91.
[18] Chini, E.N., Chini, CS., Ichiro, K., Takasawa, Sh. and Okamoto, H. (2002). CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues. Biochemical Journal. 362 (1), 125-130.
[19] Higashida, H., Salmina, A. B., Olovyannikova, R. Y., Hashii, M., Yokoyama, Sh., Koizumi, K., Jin, D., Liu, H., Lopatina, O. and Amina, S. (2007). Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochemistry international. 51(2-4), 192-199.
[20] Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A. L., Ortolan, E., Vaisitti, T. and Aydin, S. (2008). Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiological reviews,. 88 (3), 841-886.
[21] Ohashi, H., Maruyama, T., Higashi-Matsumoto, H., Nomoto, T. and Takeuchi, Y. (2002). A Novel Binding Assay For Metabotropic Glutamate Receptors Using [3H] ʟ-Quisqualic Acid And Recombinant Receptors. Zeitschrift für Naturforschung C. 57 (3-4), 348-355.
[22] Hinoi, E., Ogita, K., Takeuchi, Y., Ohashi, H., Maruyama, T. and Yoneda, Y. (2001) Characterization with [3H] quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochemistry international. 38 (3), 277-285.
[23] Chu, Z. and Hablitz, J.J. (2000). Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain research,. 879(1-2), 88-92.
[24] Conn, P.J. (2003). Physiological roles and therapeutic potential of metabotropic glutamate receptors. Annals of the New York Academy of Sciences,. 1003 (1) ,12-21.
[25] Moldrich, R.X., Chapman, A. G., De Sarro, G. and Meldrum, B. S. (2003). Glutamate metabotropic receptors as targets for drug therapy in epilepsy. European journal of pharmacology. 476 (1-2), 3-16.
[26] Wong, R.K., Bianchi, R., Chuang, Sh. and Merlin, L. R. (2005). Group I mGluR-induced epileptogenesis: distinct and overlapping roles of mGluR1 and mGluR5 and implications for antiepileptic drug design. Epilepsy Currents,. 5 (2), 63-68.
[27] Neyman, S. and Manahan‐Vaughan, D. (2008). Metabotropic glutamate receptor 1 (mGluR1) and 5 (mGluR5) regulate late phases of LTP and LTD in the hippocampal CA1 region in vitro. European Journal of Neuroscience,. 27(6), 1345-1352.
[28] Foster, W.J., Taylor, H. BC., Padamsey, Z., Jeans, A. F., Galione, A. and Emptage, N. J. (2018). Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca2+ signaling. Sci. Signal., 558 (11), 90-93.
[29] Rondou, P., Haegeman, G. and Van Craenenbroeck, K. (2010). The dopamine D4 receptor: biochemical and signalling properties. Cellular and molecular life sciences. 67 (12), 1971-1986.
[30] Girault, J.-A. and Greengard, P. (2004). The neurobiology of dopamine signaling. Archives of neurology. 61 (5), 641-644.
[31] Hasbi, A., Fan, Th., Alijaniaram, M., Nguyen, T., Perreault, M. L., O'Dowd, B. F. and George, S. R. (2009). Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proceedings of the National Academy of Sciences. 106 (50), 21377-21382.
[32] Paxinos, G., Watson, Ch., Pennisi, M. and Topple, A. (1985). Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. Journal of neuroscience methods. 13 (2), 139-143.
[33] Paxinos, G. and Watson, C. (2006). The rat brain in stereotaxic coordinates: hard cover edition., Academic Press. 456.
[34] Racine, R., Rose, P. A. and Burnham, W. (1977). Afterdischarge thresholds and kindling rates in dorsal and ventral hippocampus and dentate gyrus. Canadian Journal of Neurological Sciences. 4 (4), 273-278.
[35] Livak, K., Schmittgen, T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. 25 (4), 402-408.
[36] Rezaei, M., Sadeghian, A., Roohi, N., Shojaei, A. and Mirnajafi-Zadeh, J. (2017). Epilepsy and dopaminergic system. Physiology and Pharmacology. 21(1), 1-14.
[37] Chittajallu, R., Alford, S. and Collingridge, G. (1998). Ca2+ and synaptic plasticity. Cell calcium. 24 (5-6), 377-385.
[38] Bear, M.F. and Malenka, R.C. (1994). Synaptic plasticity: LTP and LTD. Current opinion in neurobiology,. 4 (3), 389-399.