تولید برون سلولی آنزیم پراکسیداز در باکتری بومی Bacillus tequilensis و تعیین برخی ویژگی‌های بیوشیمیایی آنزیم

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه تهران پردیس کشاورزی و منابع طبیعی گروه بیوتکنولوژی

2 دانشگاه تهران، پردیس کشاورزی و منابع طبیعی، دانشکده علوم و مهندسی کشاورزی، گروه زراعت و اصلاح نباتات

3 پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری

4 گروه زراعت و اصلاح نباتات، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

5 گروه علوم خاک، دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده
اهداف:پراکسیدازها در طیف وسیعی از فرآیند های زیست فناوری مورد استفاده قرار می گیرند که بیشتر آنها در دما و pH های بالا انجام می شوند. از آنجا که بیشتر پراکسیدازهای رایج در شرایط قلیایی و دمای بالا ناپایدار و غیرفعال بوده یافتن پراکسیدازهای ترموآلکالوفیلیک برای اهداف کاربردی امری ضروری به نظر می رسد.

مواد و روش ها: در این مطالعه تولید برون سلولی آنزیم پراکسیداز در سویه بومی Bacillus tequilensis مورد مطالعه قرار گرفت. برای این منظور، فعالیت آنزیم با استفاده از دو سوبسترای 2,4-DCP و پیروگالول در کشت مایع باکتری سنجش و تاثیر مدت زمان کشت بر تولید آنزیم و همچنین تاثیر پارامترهای pH و دما بر میزان فعالیت آنزیم بررسی شد. خالص سازی نسبی آنزیم با استفاده از روش کروماتوگرافی تعویض یونی با سفادکس DEAE A50 انجام و پارامترهای کینتیکی فعالیت آنزیم بررسی شد. در این مطالعه پارامترهای کینتیکی از قبیل Km و Vmax محاسبه شدند.

نتایج: اندازه گیری فعالیت آنزیم در زمان های مختلف کشت نشان داد که بیشترین میزان تولید آنزیم پراکسیداز 72 ساعت بعد از کشت باکتری بدست می آید.

کلیدواژه‌ها

موضوعات


1-کروژدهی ب، عباسی ع ر، بحرینی م، پوربابایی ا ع، شریف مقدم م ر. (1396). جداسازی و شناسایی بیوشیمیایی و مولکولی سویه های باکتریایی تجزیه کننده کراتین. ژنتیک نوین، 4، 546-535
2-Hamid, M. (2009). Potential applications of peroxidases. Food chemistry, 115(4), 1177-1186.
[3]- Yu, W., Liu, W., Huang, H., Zheng, F., Wang, X., Wu, Y., Li, K., Xie, X. and Jin, Y. (2014). Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS One, 9(10), e110319.
[4]- Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., & Liu, J. (2013). Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chemical engineering journal, 214, 304-309.
[5]- Kim, H. J., Suma, Y., Lee, S. H., Kim, J. A., & Kim, H. S. (2012). Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal. Journal of Molecular Catalysis B: Enzymatic, 83, 8-15.
[6]- Kurnik, K., Treder, K., Skorupa-Kłaput, M., Tretyn, A., & Tyburski, J. (2015). Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water, Air, & Soil Pollution, 226(8), 254.
[7]- S. Ahammad, “Hydrogen peroxide biosensors based on horseradish peroxidase and haemoglobin,” Jounal of Biosensors & Bioelectronics, 2013
[8]- Apitz, A. and K.-H. van Pée (2001). "Isolation and characterization of a thermostable intracellular enzyme with peroxidase activity from Bacillus sphaericus." Archives of microbiology 175(6): 405-412.
[9]- Ogawa, J., Sulistyaningdyah, W. T., Li, Q. S., Tanaka, H., Xie, S. X., Kano, K., ... & Shimizu, S. (2004). Two extracellular proteins with alkaline peroxidase activity, a novel cytochrome c and a catalase-peroxidase, from Bacillus sp. No. 13. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1699(1-2), 65-75.
[10]- Loprasert, S., Negoro, S., & Okada, H. (1988). Thermostable peroxidase from Bacillus stearothermophilus. Microbiology, 134(7), 1971-1976.
[11]- Rob, A., Hernandez, M., Ball, A. S., Tuncer, M., Arias, M. E., & Wilson, M. T. (1997). Production and partial characterization of extracellular peroxidases produced bystreptomyces avermitilis UAH30. Applied biochemistry and biotechnology, 62(2-3), 159-174.
[12] Gudelj, M., Fruhwirth, G., Paar, A., Lottspeich, F., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. (2001). A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles, 5(6), 423-429.
[13]- Antonopoulos, V. T., Rob, A., Ball, A. S., & Wilson, M. T. (2001). Dechlorination of chlorophenols using extracellular peroxidases produced by Streptomyces albus ATCC 3005. Enzyme and microbial technology, 29(1), 62-69.
[14] van Bloois, E., Pazmiño, D. E. T., Winter, R. T., & Fraaije, M. W. (2010). A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Applied microbiology and biotechnology, 86(5), 1419-1430.
[15] Rekik, H., Nadia, Z. J., Bejar, W., Kourdali, S., Belhoul, M., Hmidi, M., ... & Jaouadi, B. (2015). Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. International journal of biological macromolecules, 73, 253-263.
[16]- Barnard, A. (2012) The optimization of the extraction and purification of horseradish peroxidase from horseradish roots. Unpublished MSc thesis, University of Stellenbosch, South Africa. Available online: http://scholar.sun.ac.za/handle/ 10019.1/71784
[17]- Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of Bioprocessing & Biotechniques.
[18]- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
[19]- Falade, A. O., Eyisi, O. A., Mabinya, L. V., Nwodo, U. U., & Okoh, A. I. (2017). Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnology reports, 16, 12-17.
[20]- Khan, I., Gupta, P., & Vakhlu, J. (2011). Thermo-alkaliphilic halotolerant detergent compatible protease (s) of Bacillus tequilensis MTCC 9585. African Journal of Microbiology Research, 5(23), 3968-3975.
[21]- Manohar, P., Shanthini, T., Gothandam, K. M., Kannan, V. R., & Ramesh, N. (2017). Enhanced amylolytic activity of intracellular α-amylase produced by Bacillus tequilensis. Journal of Microbiology, Biotechnology & Food Sciences, 6(6).
[22]- Sharma, A., Tewari, R., & Soni, S. K. (2015). Application of statistical approach for optimizing CMCase production by Bacillus tequilensis S28 strain via submerged fermentation using wheat bran as carbon source. Int. J. Biol. Biomol. Agric. Food Biotechnol. Engin, 9.
[23] Khandeparker, R., Parab, P., & Amberkar, U. (2017). Recombinant xylanase from Bacillus tequilensis BT21: biochemical characterisation and its application in the production of xylobiose from agricultural residues. Food technology and biotechnology, 55(2), 164-172.
[24] Chiliveri, S. R., Koti, S., & Linga, V. R. (2016). Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation. SpringerPlus, 5(1), 559.
[25] Casciello, C., Tonin, F., Berini, F., Fasoli, E., Marinelli, F., Pollegioni, L., & Rosini, E. (2017). A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnology Reports, 13, 49-57.
[26] Tuncer, M., Kuru, A., Sahin, N., Isikli, M., & Isik, K. (2009). Production and partial characterization of extracellular peroxidase produced byStreptomyces sp. F6616 isolated in Turkey. Annals of microbiology, 59(2), 323.
[27] Bevilaqua, J. V., Cammarota, M. C., Freire, D. M. G., & Anna Jr, S. (2002). Phenol removal through combined biological and enzymatic treatments. Brazilian Journal of Chemical Engineering, 19(2), 151-158.
[28] Chiong, T., Lau, S. Y., Khor, E. H., & Danquah, M. K. (2014). Enzymatic approach to phenol removal from wastewater using peroxidases. OA Biotechnol, 10, 3-9.
[29] Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2(3), 157-167.