Extracellular peroxidase enzyme production in native bacteria Bacillus tequilensis and determination of some biochemical properties of enzyme

Document Type : Original Research

Authors

1 Department of biotechnology, College of Agriculture & Natural Resources, University of Tehran

2 Department of agronomy and plant breeding, College of Agricultural Science & Engineering, University of Tehran

3 National Institute of Genetic Engineering and Biotechnology

4 Department of Soil Sience Faculty of Agriculture Engineering and Technology College of Agriculture & Natural Resources, University of Tehran

Abstract
Aims: Peroxidases are used in a wide range of biotechnological processes, most of which are carried out at high temperatures and high pH levels. Since most of the commonly used peroxidases are unstable and inactive in alkaline conditions and high temprature, it is necessary to find thermoalkalophilic peroxidases for practical purposes.

Materials and Methods: In this study, extracellular production of peroxidase in the native strain Bacillus tequilensis was studied. for this purpose, Enzyme activity was evaluated using two substrates 2,4-DCP and pyrogallol in bacterial liquid culture and the effect of culture time on enzyme production, as well as the effect of parameters such as pH and temperature on enzyme activity investigated. The relative purification of the enzyme was performed using ion exchange chromatography with sephadex DEAE A50 and the kinetic parameters of enzyme activity were evaluated. In this study, kinetic parameters such as Km and Vmax were calculated.

Results: Measurement of enzyme activity at different times of culture indicated that the highest amount of peroxidase production was obtained 72 h after bacterial culture.

Keywords

Subjects


1-کروژدهی ب، عباسی ع ر، بحرینی م، پوربابایی ا ع، شریف مقدم م ر. (1396). جداسازی و شناسایی بیوشیمیایی و مولکولی سویه های باکتریایی تجزیه کننده کراتین. ژنتیک نوین، 4، 546-535
2-Hamid, M. (2009). Potential applications of peroxidases. Food chemistry, 115(4), 1177-1186.
[3]- Yu, W., Liu, W., Huang, H., Zheng, F., Wang, X., Wu, Y., Li, K., Xie, X. and Jin, Y. (2014). Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS One, 9(10), e110319.
[4]- Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., & Liu, J. (2013). Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chemical engineering journal, 214, 304-309.
[5]- Kim, H. J., Suma, Y., Lee, S. H., Kim, J. A., & Kim, H. S. (2012). Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal. Journal of Molecular Catalysis B: Enzymatic, 83, 8-15.
[6]- Kurnik, K., Treder, K., Skorupa-Kłaput, M., Tretyn, A., & Tyburski, J. (2015). Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water, Air, & Soil Pollution, 226(8), 254.
[7]- S. Ahammad, “Hydrogen peroxide biosensors based on horseradish peroxidase and haemoglobin,” Jounal of Biosensors & Bioelectronics, 2013
[8]- Apitz, A. and K.-H. van Pée (2001). "Isolation and characterization of a thermostable intracellular enzyme with peroxidase activity from Bacillus sphaericus." Archives of microbiology 175(6): 405-412.
[9]- Ogawa, J., Sulistyaningdyah, W. T., Li, Q. S., Tanaka, H., Xie, S. X., Kano, K., ... & Shimizu, S. (2004). Two extracellular proteins with alkaline peroxidase activity, a novel cytochrome c and a catalase-peroxidase, from Bacillus sp. No. 13. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1699(1-2), 65-75.
[10]- Loprasert, S., Negoro, S., & Okada, H. (1988). Thermostable peroxidase from Bacillus stearothermophilus. Microbiology, 134(7), 1971-1976.
[11]- Rob, A., Hernandez, M., Ball, A. S., Tuncer, M., Arias, M. E., & Wilson, M. T. (1997). Production and partial characterization of extracellular peroxidases produced bystreptomyces avermitilis UAH30. Applied biochemistry and biotechnology, 62(2-3), 159-174.
[12] Gudelj, M., Fruhwirth, G., Paar, A., Lottspeich, F., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. (2001). A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles, 5(6), 423-429.
[13]- Antonopoulos, V. T., Rob, A., Ball, A. S., & Wilson, M. T. (2001). Dechlorination of chlorophenols using extracellular peroxidases produced by Streptomyces albus ATCC 3005. Enzyme and microbial technology, 29(1), 62-69.
[14] van Bloois, E., Pazmiño, D. E. T., Winter, R. T., & Fraaije, M. W. (2010). A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Applied microbiology and biotechnology, 86(5), 1419-1430.
[15] Rekik, H., Nadia, Z. J., Bejar, W., Kourdali, S., Belhoul, M., Hmidi, M., ... & Jaouadi, B. (2015). Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. International journal of biological macromolecules, 73, 253-263.
[16]- Barnard, A. (2012) The optimization of the extraction and purification of horseradish peroxidase from horseradish roots. Unpublished MSc thesis, University of Stellenbosch, South Africa. Available online: http://scholar.sun.ac.za/handle/ 10019.1/71784
[17]- Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of Bioprocessing & Biotechniques.
[18]- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
[19]- Falade, A. O., Eyisi, O. A., Mabinya, L. V., Nwodo, U. U., & Okoh, A. I. (2017). Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnology reports, 16, 12-17.
[20]- Khan, I., Gupta, P., & Vakhlu, J. (2011). Thermo-alkaliphilic halotolerant detergent compatible protease (s) of Bacillus tequilensis MTCC 9585. African Journal of Microbiology Research, 5(23), 3968-3975.
[21]- Manohar, P., Shanthini, T., Gothandam, K. M., Kannan, V. R., & Ramesh, N. (2017). Enhanced amylolytic activity of intracellular α-amylase produced by Bacillus tequilensis. Journal of Microbiology, Biotechnology & Food Sciences, 6(6).
[22]- Sharma, A., Tewari, R., & Soni, S. K. (2015). Application of statistical approach for optimizing CMCase production by Bacillus tequilensis S28 strain via submerged fermentation using wheat bran as carbon source. Int. J. Biol. Biomol. Agric. Food Biotechnol. Engin, 9.
[23] Khandeparker, R., Parab, P., & Amberkar, U. (2017). Recombinant xylanase from Bacillus tequilensis BT21: biochemical characterisation and its application in the production of xylobiose from agricultural residues. Food technology and biotechnology, 55(2), 164-172.
[24] Chiliveri, S. R., Koti, S., & Linga, V. R. (2016). Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation. SpringerPlus, 5(1), 559.
[25] Casciello, C., Tonin, F., Berini, F., Fasoli, E., Marinelli, F., Pollegioni, L., & Rosini, E. (2017). A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnology Reports, 13, 49-57.
[26] Tuncer, M., Kuru, A., Sahin, N., Isikli, M., & Isik, K. (2009). Production and partial characterization of extracellular peroxidase produced byStreptomyces sp. F6616 isolated in Turkey. Annals of microbiology, 59(2), 323.
[27] Bevilaqua, J. V., Cammarota, M. C., Freire, D. M. G., & Anna Jr, S. (2002). Phenol removal through combined biological and enzymatic treatments. Brazilian Journal of Chemical Engineering, 19(2), 151-158.
[28] Chiong, T., Lau, S. Y., Khor, E. H., & Danquah, M. K. (2014). Enzymatic approach to phenol removal from wastewater using peroxidases. OA Biotechnol, 10, 3-9.
[29] Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2(3), 157-167.