1. Mehrbod, M., S. Trisno, and M.R. Mofrad, On the activation of integrin αIIbβ3: outside-in and inside-out pathways. Biophysical journal, 2013. 105(6): p. 1304-1315.
2. Xiong, J., H.E. Balcioglu, and E.H. Danen, Integrin signaling in control of tumor growth and progression. The international journal of biochemistry & cell biology, 2013. 45(5): p. 1012-1015.
3. Morse, E.M., N.N. Brahme, and D.A. Calderwood, Integrin cytoplasmic tail interactions. Biochemistry, 2014. 53(5): p. 810-820.
4. Springer, T.A., J. Zhu, and T. Xiao, Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. The Journal of cell biology, 2008. 182(4): p. 791-800.
5. Shattil, S.J., C. Kim, and M.H. Ginsberg, The final steps of integrin activation: the end game. Nature reviews Molecular cell biology, 2010. 11(4): p. 288.
6. Chen, W., et al., Molecular dynamics simulations of forced unbending of integrin αVβ3. PLoS computational biology, 2011. 7(2): p. e1001086.
7. Eikesdal, H.P., et al., Identification of amino acids essential for the antiangiogenic activity of tumstatin and its use in combination antitumor activity. Proceedings of the National Academy of Sciences, 2008. 105(39): p. 15040-15045.
8. Paladino, A., et al., High affinity vs. native fibronectin in the modulation of αvβ3 integrin conformational dynamics: Insights from computational analyses and implications for molecular design. PLoS computational biology, 2017. 13(1): p. e1005334.
9. Monteiro Torres, P.H., G. Limaverde Soares Costa Sousa, and P.G. Pascutti, Structural analysis of the N‐terminal fragment of the antiangiogenic protein endostatin: A molecular dynamics study. Proteins: Structure, Function, and Bioinformatics, 2011. 79(9): p. 2684-2692.
10. He, G.-A., et al., Canstatin-N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochemical and biophysical research communications, 2003. 312(3): p. 801-805.
11. Comeau, S.R., et al., ClusPro: a fully automated algorithm for protein–protein docking. Nucleic acids research, 2004. 32(suppl_2): p. W96-W99.
12. De Vries, S.J., M. Van Dijk, and A.M. Bonvin, The HADDOCK web server for data-driven biomolecular docking. Nature protocols, 2010. 5(5): p. 883.
13. DeLano, W.L., The PyMOL molecular graphics system. http://www. pymol. org, 2002.
14. Lindahl, E., B. Hess, and D. Van Der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 2001. 7(8): p. 306-317.
15. Essmann, U., et al., A smooth particle mesh Ewald method. The Journal of chemical physics, 1995. 103(19): p. 8577-8593.
16. Danhier, F., A. Le Breton, and V.r. Préat, RGD-based strategies to target alpha (v) beta (3) integrin in cancer therapy and diagnosis. Molecular pharmaceutics, 2012. 9(11): p. 2961-2973.
17. Kapp, T.G., et al., A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Scientific reports, 2017. 7: p. 39805.