مطالعه ساختار⸲ الیگومریزاسیون و فعالیت چاپرونی αB-کریستالین نوترکیب انسانی در حضور یون‌های مس و آنتی اکسیدان گلوتاتیون

نوع مقاله : پژوهشی اصیل

نویسندگان

1 آزمایشگاه شیمی پروتئین، بخش زیست شناسی، دانشگاه شیراز، شیراز، ایران

2 مرکز تحقیقات بیوشیمی-بیوفیزیک⸲ دانشگاه تهران⸲ تهران⸲ ایران

چکیده
غلظت یون مس در لنز بیماران دیابتی، لنز افراد مسن و لنز بیماران مبتلا به آب­مروارید به میزان چشمگیری افزایش می­یابد. اسید آسکوربیک که غلظت بالایی در لنز چشم دارد، در حضور یون­های مس اکسید می­شود و همزمان با این فرایند اکسایشی رادیکال آزاد در محیط تولید می­گردد. محصولات اکسایشی اسید اسکوربیک به همراه قندهای احیا کننده با پروتئین­های لنز برای ایجاد ترکیبات سمی که در کدورت لنز و بروز بیماری آب مروارید نقش مهمی دارند، واکنش می­دهند.  از طرفی مولکول تیولی گلوتاتیون که یکی از اجزای اصلی سیستم  دفاع آنتی­اکسیدانی لنز است با یون مس کمپلکس ایجاد کرده و به این ترتیب مانع از تولید گونه­های فعال اکسیژنی می­گردد.

در این پژوهش ساختار و عملکرد پروتئین آلفا-Bکریستالین نوترکیب انسانی در حضور یون­های مس و گلوتاتیون به روش­های مختلف اسپکتروسکوپی مطالعه شد. نتایج نشان داد که مس ضمن اتصال به آلفا-Bکریستالین تغییرات مهمی در ساختار آن ایجاد کرده که به افزایش شعاع هیدرودینامیکی و افزایش فعالیت چاپرونی آن می­انجامد. بر اساس نتایج این پژوهش تغییرات ساختاری و عملکردی که بوسیله یون­های مس در آلفا-Bکریستالین القا می­شود به میزان قابل­ توجهی در حضور گلوتاتیون جلوگیری می­شود. بنابراین گلوتاتیون با اتصال به یون مس از اثرات تخریبی آن جلوگیری می­نماید. از اینرو نتایج مطالعه حاضر علاوه بر فعالیت آنتی­اکسیدانی، نقش حفاظتی جدیدی را برای گلوتاتیون معرفی نموده که این وظیفه در لنزهای با غلظت بالای مس از اهمیت ویژه­ای برخوردار است.

کلیدواژه‌ها

موضوعات


[1] Graw, J. (2009) Genetics of crystallins: Cataract and beyond Exp. Eye Res. 88 173–89
[2] Horwitz, J. (2003) Alpha-crystallin Exp. Eye Res. 76 145–53
[3] Andley, U. P. (2007) Crystallins in the eye: Function and pathology Prog. Retin. Eye Res. 26 78–98
[4] Resnikoff ,S., Pascolini ,D., Etya'ale ,D., Kocur ,I., Pararajasegaram ,R., Pokharel ,G. P. and Mariotti ,S. P. (2004) Global data on visual impairment in the year 2002 Bull. World Health Organ.
[5] Moreau ,K. L. and King ,J. A. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention Trends Mol. Med. 18 273–82
[6] Ma ,Z., Hanson ,S. R. A., Lampi ,K. J., David ,L. L., Smith ,D. L. and Smith ,J. B. (1998) Age-Related Changes in Human Lens Crystallins Identified by HPLC and Mass Spectrometry Exp. Eye Res. 67 21–30
[7] Takemoto ,L. J. (1996) Differential Phosphorylation of Alpha-A Crystallin in Human Lens of Different Age Exp. Eye Res. 62 499–504
[8] Banerjee ,P. R., Pande ,A., Patrosz ,J., Thurston ,G. M. and Pande ,J. (2011) Cataract-associated mutant E107A of human D-crystallin shows increased attraction to -crystallin and enhanced light scattering Proc. Natl. Acad. Sci. 108 574–9
[9] Takemoto ,L. and Sorensen ,C. M. (2008) Protein–protein interactions and lens transparency Exp. Eye Res. 87 496–501
[10] Bloemendal ,H., de Jong ,W., Jaenicke ,R., Lubsen ,N. H., Slingsby ,C. and Tardieu ,A. (2004) Ageing and vision: structure, stability and function of lens crystallins Prog. Biophys. Mol. Biol. 86 407–85
[11] Michael ,R. and Bron ,A. J. (2011) The ageing lens and cataract: a model of normal and pathological ageing Philos. Trans. R. Soc. B Biol. Sci. 366 1278–92
[12] Slingsby ,C., Wistow ,G. J. and Clark ,A. R. (2013) Evolution of crystallins for a role in the vertebrate eye lens Protein Sci. 22 367–80
[13] Lamba ,O. P., Borchman ,D., Sinha ,S. K., Shah ,J., Renugopalakrishnan ,V. and Yappert ,M. C. (1993) Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitative analysis and resolution by Fourier self-deconvolution and curve fit Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1163 113–23
[14] Farnsworth ,P. N., Groth–Vasselli ,B., Greenfield ,N. J. and Singh ,K. (1997) Effects of temperature and concentration on bovine lens α-crystallin secondary structure: a circular dichroism spectroscopic study Int. J. Biol. Macromol. 20 283–91
[15] Reddy ,G. B., Das ,K. P., Petrash ,J. M. and Surewicz ,W. K. (2000) Temperature-dependent Chaperone Activity and Structural Properties of Human αA- and αB-crystallins J. Biol. Chem. 275 4565–70
[16] de Jong ,W. W., Caspers ,GJ and Leunissen ,J. A. M. (1998) Genealogy of the α-crystallin—small heat-shock protein superfamily Int. J. Biol. Macromol. 22 151–62
[17] Reddy ,G., Kumar ,P. and Kumar ,M. (2006) Chaperone-like activity and hydrophobicity of α-crystallin IUBMB Life (International :union: Biochem. Mol. Biol. Life) 58 632–41
[18] Mchaourab ,H. S., Godar ,J. A. and Stewart ,P. L. (2009) Structure and Mechanism of Protein Stability Sensors: Chaperone Activity of Small Heat Shock Proteins Biochemistry 48 3828–37
[19] Ahmad ,M. F., Singh ,D., Taiyab ,A., Ramakrishna ,T., Raman ,B. and Rao ,C. M. (2008) Selective Cu2+ Binding, Redox Silencing, and Cytoprotective Effects of the Small Heat Shock Proteins αA- and αB-Crystallin J. Mol. Biol. 382 812–24
[20] Bhat ,S. P. and Nagineni ,C. N. (1989) αB subunit of lens-specific protein α-crystallin is present in other ocular and non-ocular tissues Biochem. Biophys. Res. Commun. 158 319–25
[21] Horwitz ,J., Bova ,M. P., Ding ,L-L, Haley ,D. A. and Stewart ,P. L. (1999) Lens α-crystallin: Function and structure Eye 13 403–8
[22] Montfort ,R. Van., Slingsby ,C. and Vierlingt ,E. (2001) Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones pp 105–56
[23] Clark ,J. I. and Muchowski ,P. J. (2000) Small heat-shock proteins and their potential role in human disease Curr. Opin. Struct. Biol. 10 52–9
[24] Sun ,Y. and MacRae ,T. H. (2005) The small heat shock proteins and their role in human disease FEBS J. 272 2613–27
[25] Moschini ,R., Marini ,I., Malerba ,M., Cappiello ,M., Corso ,A. Del and Mura ,U. (2006) Chaperone-like activity of α-crystallin toward aldose reductase oxidatively stressed by copper ion Arch. Biochem. Biophys. 453 13–7
[26] Ganadu ,M. L., Aru ,M., Mura ,G. M., Coi ,A., Mlynarz ,P. and Kozlowski ,H. (2004) Effects of divalent metal ions on the αB-crystallin chaperone-like activity: Spectroscopic evidence for a complex between copper(II) and protein J. Inorg. Biochem. 98 1103–9
[27] Biswas ,A. and Das ,K. P. (2008) Zn2+ enhances the molecular chaperone function and stability of α-crystallin Biochemistry 47 804–16
[28] Biswas ,A., Karmakar ,S., Chowdhury ,A. and Das ,K. P. (2016) Interaction of α-crystallin with some small molecules and its effect on its structure and function Biochim. Biophys. Acta - Gen. Subj. 1860 211–21
[29] Raju ,M., Santhoshkumar ,P., Henzl ,T. M. and Sharma ,K. K. (2011) Identification and characterization of a copper-binding site in αa-crystallin Free Radic. Biol. Med. 50 1429–36
[30] Lin ,J. (1997) Pathophysiology of cataracts: Copper ion and peroxidation in diabetics Jpn. J. Ophthalmol. 41 130–7
[31] Kisic ,B., Miric ,D., Zoric ,L., Ilic ,A. and Dragojevic ,I. (2012) Antioxidant Capacity of Lenses with Age-Related Cataract Oxid. Med. Cell. Longev. 2012 1–8
[32] Birben ,E., Sahiner ,U. M., Sackesen ,C., Erzurum ,S. and Kalayci ,O. (2012) Oxidative Stress and Antioxidant Defense World Allergy Organ. J. 5 9–19
[33] Bensch ,K. G., Fleming ,J. E. and Lohmann ,W. (1985) The role of ascorbic acid in senile cataract. Proc. Natl. Acad. Sci. 82 7193–6
[34] Saxena ,P., Saxena ,A. K., Cui ,X. L., Obrenovich ,M., Gudipaty ,K. and Monnier ,V. M. (2000) Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: Possible role of advanced glycation end products Investig. Ophthalmol. Vis. Sci. 41 1473–81
[35] Ghosh ,K. S., Pande ,A. and Pande ,J. (2011) Binding of γ-Crystallin Substrate Prevents the Binding of Copper and Zinc Ions to the Molecular Chaperone α-Crystallin Biochemistry 50 3279–81
[36] Hawse ,J. R., Cumming ,J. R., Oppermann ,B., Sheets ,N. L., Reddy ,V. N. and Kantorow ,M. (2003) Activation of Metallothioneins and α-Crystallin/sHSPs in Human Lens Epithelial Cells by Specific Metals and the Metal Content of Aging Clear Human Lenses Investig. Opthalmology Vis. Sci. 44 672
[37] GIBLIN ,F. J. (2000) Glutathione: A Vital Lens Antioxidant J. Ocul. Pharmacol. Ther. 16 121–35
[38] Harding ,J. J. (2002) Viewing molecular mechanisms of ageing through a lens Ageing Res. Rev. 1 465–79
[39] Lou ,M. F. (2003) Redox regulation in the lens Prog. Retin. Eye Res. 22 657–82
[40] Ghahramani ,M., Yousefi ,R., Khoshaman ,K., Moghadam ,S. S. and Kurganov ,B. I. (2016) Evaluation of structure, chaperone-like activity and protective ability of peroxynitrite modified human α-Crystallin subunits against copper-mediated ascorbic acid oxidation Int. J. Biol. Macromol.
[41] Ecroyd ,H., Meehan ,S., Horwitz ,J., Aquilina ,J. A., Benesch ,J. L. P., Robinson ,C. V., Macphee ,C. E. and Carver ,J. A. (2007) Mimicking phosphorylation of αB-crystallin affects its chaperone activity Biochem. J. 401 129–41
[42] Kelly ,S. M., Jess ,T. J. and Price ,N. C. (2005) How to study proteins by circular dichroism Biochim. Biophys. Acta - Proteins Proteomics 1751 119–39
[43] Khoshaman ,K., Yousefi ,R., Tamaddon ,A. M., Abolmaali ,S. S., Oryan ,A., Moosavi-Movahedi ,A. A. and Kurganov ,B. I. (2017) The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C Biochim. Biophys. Acta - Proteins Proteomics 1865 604–18
[44] Datiles ,M. B. (2008) Clinical Detection of Precataractous Lens Protein Changes Using Dynamic Light Scattering Arch. Ophthalmol. 126 1687
[45] Kurganov ,B. I. (2013) Antiaggregation activity of chaperones and its quantification Biochem. 78 1554–66
[46] Hames ,B. and Rickwood ,D. (1998) Gel electrophoresis: a practical approach Vasa
[47] Smith ,B. J. (1984) SDS Polyacrylamide Gel Electrophoresis of Proteins Proteins (New Jersey: Humana Press) pp 41–56
[48] Laemmli ,U. K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 Nature 227 680–5
[49] Porter ,R. R. (1953) Partition chromatography of insulin and other proteins Biochem. J. 53 320–8
[50] Bradford ,M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 248–54
[51] Kalpić ,D., Hlupić ,N. and Lovrić ,M. (2011) Student’s t-Tests International Encyclopedia of Statistical Science ed M Lovric (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 1559–63
[52] Bhanuprakash Reddy ,G., Yadagiri Reddy ,P., Vijayalakshmi ,A., Satish Kumar ,M., Suryanarayana ,P. and Sesikeran ,B. (2002) Effect of long-term dietary manipulation on the aggregation of rat lens crystallins: Role of α-crystallin chaperone function Mol. Vis.
[53] Pollreisz ,A. and Schmidt-Erfurth ,U. (2010) Diabetic Cataract—Pathogenesis, Epidemiology and Treatment J. Ophthalmol. 2010 1–8
[54] Langford-Smith ,A., Tilakaratna ,V., Lythgoe ,P. R., Clark ,S. J., Bishop ,P. N. and Day ,A. J. (2016) Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation PLoS One 11 e0147576
[55] Samuni, A., Apronovitch, J., Godinger, D., Chevion, M. and Czapski, G. (1983) On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism Eur. J. Biochem. 137 119–24
[56] Ávila ,F., Schmeda-Hirschmann ,G. and Silva ,E. (2017) The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose Molecules 23 6
[57] Argirova ,M. D. and Ortwerth ,B. J. (2003) Activation of protein-bound copper ions during early glycation: study on two proteins Arch. Biochem. Biophys. 420 176–84
[58] Viktorínová ,A., Tošerová ,E., Križko ,M. and Ďuračková ,Z. (2009) Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus Metabolism 58 1477–82
[59] Nemet ,I. and Monnier ,V. M. (2011) Vitamin C Degradation Products and Pathways in the Human Lens J. Biol. Chem. 286 37128–36
[60] Argirov ,O. K., Lin ,B., Olesen ,P. and Ortwerth ,B. J. (2003) Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine Biochim. Biophys. Acta - Gen. Subj. 1620 235–44
[61] Bongarzone ,S., Savickas ,V., Luzi ,F. and Gee ,A. D. (2017) Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective J. Med. Chem. 60 7213–32
[62] Smuda ,M., Henning ,C., Raghavan ,C. T., Johar ,K., Vasavada ,A. R., Nagaraj ,R. H. and Glomb ,M. A. (2015) Comprehensive Analysis of Maillard Protein Modifications in Human Lenses: Effect of Age and Cataract Biochemistry 54 2500–7
[63] Jiménez ,I. and Speisky ,H. (2000) Effects of copper ions on the free radical-scavenging properties of reduced gluthathione: implications of a complex formation J. Trace Elem. Med. Biol. 14 161–7
[64] Freedman ,J. H., Ciriolo ,M. R. and Peisach ,J. (1989) The role of glutathione in copper metabolism and toxicity J. Biol. Chem.
[65] Ferreira ,A. M. D. C., Ciriolo ,M. R., Marcocci ,L. and Rotilio ,G. (1993) Copper(I) transfer into metallothionein mediated by glutathione Biochem. J. 292 673–6
[66] Ngamchuea ,K., Batchelor-McAuley ,C. and Compton ,R. G. (2016) The Copper(II)-Catalyzed Oxidation of Glutathione Chem. - A Eur. J. 22 15937–44
[67] Mainz ,A., Bardiaux ,B., Kuppler ,F., Multhaup ,G., Felli ,I. C., Pierattelli ,R. and Reif ,B. (2012) Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin J. Biol. Chem. 287 1128–38
[68] Clark ,A. R., Naylor ,C. E., Bagnéris ,C., Keep ,N. H. and Slingsby ,C. (2011) Crystal Structure of R120G Disease Mutant of Human αB-Crystallin Domain Dimer Shows Closure of a Groove J. Mol. Biol. 408 118–34
[69] Karmakar ,S. and Das ,K. P. (2012) Identification of histidine residues involved in Zn2+ binding to αa- and αb-crystallin by chemical modification and MALDI TOF mass spectrometry Protein J. 31 623–40