Experimental study of red and blue illumination on growth rate and lipid accumulation in continuous culture of microalgae and cyanobacteria

Document Type : Original Research

Authors

School of Chemical, Gas and Petroleum Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract
In this study, the effect of red and blue illumination on continuous culture of two different species of microalgae and cynicocytosis was studied. Comparison of blue and red lights in the cyanobacteria, Synechocystis sp. PCC6803, showed that this specie grows very fast under red light illumination, but it has very slow growth rate under blue light exposure. In spite of huge difference in growth rate, the lipid content and the fatty acid composition of Synechocystis was approximately the same for red and blue light illumination. For microalgae, Chlorella Sorokiniana, the blue light resulted to slightly higher growth rate than the red light. The C18:3 unsaturated fatty acid content was significantly higher for red light illumination compare to blue light illumination. Overall, considering the lower energy requirement for illumination of red, this light is more efficient than blue light for cultivation of Chlorella Sorokiniana.

Keywords

Subjects


.1 Rezaei, M. R., Sayadi, M. H., Shabani M. (2016). Spirulina, a new way to remove greenhouse gases in the arid and semiarid climate of Iran.. Modares Journal of Biotechnology, 7(1), 20-30.
.2 Abedini Najafabadi, H., Malekzadeh, M., Jalilian, F., Vossoughi, M., Pazuki, G. (2015). Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions. Bioresource Technology, 180, 311-317.
.3 Schulze, P. S. C., Barreira, L. A., Pereira, H. G. C., Perales, J. A., Varela, J. C. S. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology, 32(8), 422-430.
.4 Cheirsilp, B., Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510-516.
.5 Yan, C., Zhao, Y., Zheng, Z., Luo, X. (2013). Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. Biodegradation, 24(5), 721-732.
.6 Markou, G. (2014). Effect of Various Colors of Light-Emitting Diodes (LEDs) on the Biomass Composition of Arthrospira platensis Cultivated in Semi-continuous Mode. Applied Biochemistry and Biotechnology, 172(5), 2758-2768.
.7 Kang, Z., Kim., B. H., Ramanan, R., Choi, J. E., Yang, J. W., Oh, H. M., Kim, H. S. (2015). A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Microbiol. Biotechnol, 25, 109-118.
.8 Anderson, S. L., McIntosh, L. (1991). Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. Journal of bacteriology, 173(9), 2761-2767.
.9 Zavřel, T., Sinetova, M. A., Búzová, D., Literáková, P., Červený, J. (2015). Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Engineering in Life Sciences, 15(1), 122-132.
.10 Bull, A. T. (2010). The renaissance of continuous culture in the post-genomics age. Journal of Industrial Microbiology & Biotechnology, 37(10), 993-1021.
.11 Teo, C. L., Atta, M., Bukhari, A., Taisir, M., Yusuf, A. M., Idris, A. (2014). Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource Technology, 162, 38-44.
.12 D Das, P., Lei, W., Aziz, S. S., Obbard, J. P. (2011). Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102(4), 3883-3887.
.13 Kim, C. W., Sung, M.-G., Nam, K., Moon, M., Kwon, J.-H., Yang, J.-W. (2014). Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresource Technology, 159, 30-35.
.14 Baba, M., Kikuta, F., Suzuki, I., Watanabe, M. M., Shiraiwa, Y. (2012). Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresource Technology, 109, 266-270.
.15 Fledler, B., Broc, D., Schubert, H., Rediger, A., Börner, T., Wilde, A. (2004). Involvement of Cyanobacterial Phytochromes in Growth Under Different Light Qualitities and Quantities. Photochemistry and Photobiology, 79(6), 551-555.
.16 van Alphen, P., Abedini Najafabadi, H., Branco dos Santos, F., Hellingwerf, K. J. (2018). Increasing the Photoautotrophic Growth Rate of Synechocystis sp. PCC 6803 by Identifying the Limitations of Its Cultivation. Biotechnology Journal, 13(8), 1700764.
.17 Skau, L. F.; Andersen, T.; Thrane, J.-E.; Hessen, D. O. (2017). Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ, 5, e3743-e3743.
.18 Bligh, E. G., Dyer W. J., (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistery physiology, 37(8), 911-917.
.19 Han, B.-P., Virtanen, M., Koponen, J., & Straškraba, M. (2000). Effect of photoinhibition on algal photosynthesis: A dynamic model. Journal of Plankton Research, 22(5), 865-885.
.20 Xia, L., Huang, R., Li, Y., & Song, S. (2017). The effect of growth phase on the surface properties of three oleaginous microalgae (botryococcus sp. Facgb-762, chlorella sp. Xj-445 and desmodesmus bijugatus xj-231). PLOS ONE, 12(10), e0186434.
.21 Baroni, É. G., Yap, K. Y., Webley, P. A., Scales, P. J., & Martin, G. J. O. (2019). The effect of nitrogen depletion on the cell size, shape, density and gravitational settling of nannochloropsis salina, chlorella sp. (marine) and haematococcus pluvialis. Algal Research, 39, 101454.