طراحی و ساخت آپتاحسگر جهت تشخیص سریع و آسان آنتی‌ژن کارسینوامبریونیک مبتنی بر نانوذرات کروی طلا

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه شهید بهشتی

چکیده
آپتامرها، توالی­های تک رشته DNA یا RNA، به دلیل مزایای زیادی هم­چون اختصاصیت و تمایل بالا، مقرون به صرفه بودن و روش تولید آسان کاربردهای مختلفی در پژوهش­های زیستی از جمله ساخت آپتا­حسگرها دارند. در این پژوهش، آپتا­حسگری بر اساس تغییرات طیف SPR نانوذرات کروی طلا برای تشخیص آنتی­ژن کارسینوامبریونیک CEA)) به عنوان نشانگر سرطان پستان طراحی و عملکرد آن ارزیابی شد .در حضور آپتامر، نانوذارت کروی طلا پایدار بوده و با افزودن سدیم کلراید، طیف SPR نانوذرات کروی شکل بدون تغییر ماند. اما در حضور نشانگر سرطانی CEA، آپتامر به مولکول هدف چسبیده و در نتیجه با افزودن سدیم کلراید، طیف SPR نانوذرات کروی طلا تغییر می­کند. نتایج این پژوهش نشان داد که این زیست­حسگر توانایی تشخیص CEA را در محدوده 50 نانوگرم بر میلی­لیتر دارد و حد تشخیص این زیست­حسگر در حدود 22.75 نانوگرم بر میلی­لیتر است. به نظر می­رسد این زیست­حسگر می­تواند برای شناسایی نشانگر سرطانی آنتی­ژن کارسینوامبریونیک مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


[1] S. H. Faridi, M. A. Khan, B. Siddiqui, V. Maheshwari, and T. Aggarwal, “Role of serum carcinoembryonic antigen ( CEA ) as a tumor marker in breast cancer,” vol. 1, no. 2, pp. 2–5, 2014.
[2] S. Mehanovi, “The possible role of tumor antigen CA 15-3 , CEA and ferritin in malignant and benign disease,” vol. 2, no. 2, 2012.
[3] D. H. I, J. V. Ii, E. K. Iii, and F. A. Iv, “Levels of CEA and Ca 19 - 9 in the sera and peritoneal cavity in patients with gastric and Níveis de CEA e Ca 19 - 9 em soro e cavidade peritoneal em pacientes com câncer do estômago e pâncreas,” vol. 27, no. 6, pp. 410–416.
[4] T. Author and M. Biology, “A comprehensive phylogenetic and structural analysis of the carcinoembryonic antigen (CEA) gene family,” vol. 2014;, no. 6(6):, pp. 1314–1326.
[5] P. A. Fakih MG, “CEA monitoring in colorectal cancer. What you should know,” p. 20:579-88, 594, 596 passim., 2006.
[6] W. Wang et al., “Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma,” vol. 11, no. 14, pp. 2166–2170, 2005.
[7] C. G. Sørensen, W. K. Karlsson, H. Pommergaard, J. Burcharth, and J. Rosenberg, “The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence e A systematic review,” vol. 25, pp. 134–144, 2016.
[8] K. Sato, M. Tokeshi, H. Kimura, and T. Kitamori, “Determination of Carcinoembryonic Antigen in Human Sera by Integrated Bead-Bed Immunoasay in a Microchip for Cancer Diagnosis,” vol. 73, no. 6, pp. 3051–3056, 2001.
[9] F. Martin, M. S. Martin, and L. De Midecine, “Radioimmunoassay of Carcinoembryonic Antigen in extracts of human colon and stomach,” vol. 647, pp. 641–647, 1972.
[10] K. Matsumoto, J. Yuan, G. Wang, and H. Kimura, “Simultaneous Determination of α-Fetoprotein and Carcinoembryonic Antigen in Human Serum by Time-Resolved Fluoroimmunoassay,” vol. 87, pp. 81–87, 1999.
[11] H. Chon, S. Lee, S. W. Son, C. H. Oh, and J. Choo, “Highly Sensitive Immunoassay of Lung Cancer Marker Carcinoembryonic Antigen Using Surface-Enhanced Raman Scattering of Hollow Gold Nanospheres,” vol. 81, no. 8, pp. 3029–3034, 2009.
[12] D. Tang and J. Ren, “In Situ Amplified Electrochemical Immunoassay for Carcinoembryonic Antigen Using Horseradish Peroxidase-Encapsulated Nanogold Hollow Microspheres as Labels,” vol. 80, no. 21, pp. 8064–8070, 2008.
[13] X. He, R. Yuan, Y. Chai, and Y. Shi, “A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au / chitosan composite as immobilization matrix,” vol. 70, pp. 823–829, 2008.
[14] “Aptasensors Design Considerations,” .
[15] A. D. Scheludko et al., “In vitro selection of RNA molecules that bind specific ligands.,” J. Colloid Interface Sci., vol. 245, no. 1, pp. 118–143, 1998.
[16] C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” vol. 249, no. 4968, p. 505 LP-510, 1990.
[17] S. D. Jayasena, “Aptamers : An Emerging Class of Molecules That Rival Antibodies in Diagnostics,” vol. 1650, pp. 1628–1650, 1999.
[18] E. J. Cho, J. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” vol. 2:241-264, 2009.
[19] S. Song, L. Wang, J. Li, C. Fan, and J. Zhao, “Aptamer-based biosensors,” vol. 27, no. 2, pp. 108–117, 2008.
[20] J. S. Ellington, AD, “In vitro selection of RNA molecules that bind specific ligands,” vol. 346, pp. 818–822, 1990.
[21] S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, and J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” vol. 15, no. 11–12, pp. 549–578, 2000.
[22] “C. L. Smith, Patent U.S. 0254901 A1,” 2010.
[23] Z. Wu, H. Li, and Z. Liu, “An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer,” vol. 206, pp. 531–537, 2015.
[24] H. Quan et al., “Electrochimica Acta Electrochemical detection of carcinoembryonic antigen based on silver nanocluster / horseradish peroxidase nanocomposite as signal probe,” vol. 176, pp. 893–897, 2015.
[25] Z. Zhou et al., “Capillary electrophoresis-chemiluminescence detection for carcino-embryonic antigen based on aptamer / graphene oxide structure,” vol. 64, pp. 493–498, 2015.
[26] W. Zhao, W. Chiuman, M. A. Brook, and Y. Li, “Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation,” vol. 8, no. 7, pp. 727–731, 2007.
[27] J. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” vol. 45, no. 1, pp. 90–94, 2005.
[28] M. Hu, J. Chen, Z. Li, L. Au, G. V Hartland, and X. Li, “Gold Nanostructures : Engineering Their Plasmonic Properties for Biomedical Gold nanostructures : engineering their plasmonic properties for biomedical applications,” vol. 35, pp. 1084–1094, 2006.
[29] Z. Yuan, C. Hu, H. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” pp. 1611–1626, 2016.
[30] F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon Resonances of a Gold Nanostar,” vol. 7 (3), pp. 729–732, 2007.
[31] R. C. M. & J. J. S. Chad A. Mirkin, Robert L. Letsinger, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” vol. 382, pp. 607–609, 1996.
[32] X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” vol. 58, pp. 3–7, 2007.
[33] H. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” vol. 101, no. 39, 2004.