[1] Pavezzi, F. C.,Gomes, E., andSilva, R. (2008) Production andcharacterization of glucoamylase from fungus aspergillus awamori expressed in yeast saccharomyces cerevisiae using different carbon sources. Braz. J Microbiol.39,108-114.
[2] Hyun, H. H., and Zeikus, J. G. (1985) General biochemical characterization of thermostable pullulanase and glucoamylase from clostridium thermohydrosulfuricum. Am. Soc Microbiol. 49,1168-1173.
[3] Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E.,Harrison, M., Roepstorff, P., andSvensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys Acta. 1543,275-293.
[4] Campos, L., and Felix, C. R. (1995) Purification and characterization of a glucoamylasefrom Humicola grisea. Am. Soc Microbiol. 61, 2436-2438.
[5] Jebor, M. A., Ali, Z. M., and Hassan, B. A.(2014) Purification and characterization of the glucoamylase from Aspergillus niger. Int. J Curr Microbiol App Sci.3,63-75.
[6] Daniel, A. M., Fuchs, E., Liu, Y., and Ford, C. (2008) Directed evolution of Aspergillus niger glucoamylase to increase thermostability. Microbiol. Biotechnol. 1,523-531.
[7] Liu, H-L., and Wang, W-C.(2003) Protein engineering to improve the thermostability ofglucoamylase from Aspergillus awamori based on moleculardynamics simulations. Protein. Eng.16,19-25.
[8] Kovacic, F., Mandrysch, A., Poojari, C., Strodel, B., andJaeger, K-E. (2016)Structural features determining thermal adaptation of esterases. Protein. Eng De Sel.29,65-76.
[9] Liu,Y., Meng, Z., Shi, R., Zhan, L., Hu, W., Xiang, H., and Xie, Q. (2015) Effects of temperature and additives on the thermal stability of glucoamylase from Aspergillus niger. J. Microbiol Biotechnol.25, 33-43.
[10] Zeiske, T.,Stafford, K. A., andPalmer, A. G. (2016) Thermostability of enzymes from molecular dynamics simulations. J. Chem Theory Comput. 12, 2489–2492.
[11] http://uniprot.org
[12] Chen, J., Zhang, Y. Q., Zhao, C. Q. A. N., Li, C. Q., Zhou, Q. X., andLi, D. C. (2007)Cloning of gene encoding thermostable glucoamylase from Chaetomium thermophilum and its expression in Pichia pastoris. J. Appl Microbiol.103,2277-2284.
[13] Notredame, C. A., Higgins, D. G., Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment.J. Mol Biol.302, 205-217.
[14] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990) Basic local alignment search tool. J. Mol Biol. 215, 403-410.
[15] States, D. J., Gish, W. (1994) Combined use of sequence similarity and codon bias for coding region identification. J. Comput Biol. 1, 39-50.
[16] Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A.(2000) Comparative protein structure modeling of genes and genomes.Annu. Rev Biophys Biomol Struct.29, 291-325.
[17] Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., and Shaw, D. E. (2009)Long-timescale molecular dynamics simulations of proteinstructure and function. Curr. Opin Struct Biol.19,120-127.
[18] Abdulazeez, S. (2019) Molecular simulation studies on B-cell lymphoma/leukaemia 11A. (BCL11A). Am. J Transl. Res. 11, 3689-3697.
[19] Goswami, C., Jayraman, M., Bakthavachalam, T., Sethi, G., Krishna, R. (2017) Homology modeling, molecular dynamics simulation and essential dynamics on anopheles gambiae D7r1. Int. J Biochim. Biophys.5, 65-77.
[20] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE and Berendsen HJC GROMACS: fast, flexible, and free. J. Comput. Chem. 2005; 26:1701-1718.
[21] Berendsen HJC, Van der Spoel D and Van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun.1995; 91:43-56.
[22] Chong, L. T., Duan, Y., Wang, L., Massova, I., and Kollman, P. A. (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Biophys. 96, 14330-14335.
[23] Baker, N. A., Sept, D., Joseph, S., Holst, M. J., andMcCammon, J. A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. chem. biophys.98, 10037-10041.