[1] Ahmed, M., Jiang, X., Deng, Z., and Narain, R. (2009) Cationic Glyco-Functionalized Single-Walled Carbon Nanotubes as Efficient Gene Delivery Vehicles. Bioconjug. Chem. 20, 2017- 2022.
[2] Bianco, A., Kostarelos, K., and Prato, M. (2005) Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Bio. 9, 674- 679.
[3] Wang, M., Ya, S., Wang, C., and Kong, J. (2010) Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano. 4, 6483- 6490.
[4] Esfandiary, E., Valiani, A., Hashemibeni, B., Moradi, I., and Narimani, M. (2014) The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro. Adv. Biomed. Res. 3, 40.
[5] Lin, D., and Xing, B. (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 150, 243- 250.
[6] Patlolla, A., Knighten, B., and Tchounwou, P. (2010) Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. National Institutes of Health. 20, 65- 72.
[7] Vardharajula, S., Ali, SK., Tiwari, P. M., Eroglu, E., Vig, K., Dennis, V. A., and Singh, S. R. (2012) Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomedicine. 7, 5361- 5374.
[8] Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J. P., Prato, M., Kostarelos, K., and Bianco, A. (2004). Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew. Chem. Int. Ed. 43, 5242– 5246.
[9] Foillard, S., Zuber, G., and Doris, E. (2011) Polyethylenimine–carbon nanotube nanohybrids for siRNA-mediated gene silencing at cellular level. Nanoscale. 3, 1461–1464.
[10] Liu, Y., Wu, D. C., Zhang, W. D., Jiang, X., He, C. B., Shung, C. T., Hong, G. S., and Leong, K. W. (2005) Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA. Angew. Chem. Int. Ed. 44, 4782 – 4785.
[11] Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C. D., Briand, J. P., Prato, M., Bianco, A., and Kostarelos, K. (2005) Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. J. Am. Chem. Soc. 127, 4388-4396.
[12] Khodakovskaya, M., De Silva, K., Biris, A. S., Dervishi, E., and Villagarcia, H. (2012) Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano. 6, 2128–2135.
[13] Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., and Biris, A. S. (2009) Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano. 3, 3221-3227.
[14] Zhai, G., Gutowski, S. M., Walters, K. S., Yan, B., and Schnoor, J. L. (2015) Charge, Size, and Cellular Selectivity for Multiwall Carbon Nanotubes by Maize and Soybean. Environ. Sci. Technol. 49, 7380-7390.
[15] Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., and Fang, X. (2009) Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. Nano Lett. 9, 1007-1010.
[16] Pompeo, F., and Resasco, D. E. (2002) Water solubilization of single-walled carbon nanotubes by functionalization glucosamine. Nano Letter. 2, 369- 373.
[17] Zhang, L., Wang, X. J., Wang, J., Grinberg, N., Krishnamurthy, D., and Senanayake, C. H. (2009) An improved method of amide synthesis using acyl chlorides. Tetrahedron Lett. 50, 2964-2966.
[18] Mirzapoora, A., and Ranjbar, B. (2017) Biophysical and electrochemical properties of Self-assembled noncovalent SWNT/DNA hybrid and electroactive nanostructure. Physica E: Low-dimensional Systems and Nanostructures. 93, 208-215.
[19] Usami, S., Morikawa, S., Takebe, I., and Machida, Y. (1987) Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol. Gen. Genet. 209, 221- 226.
[20] Carpita, N., Sabularse, D., Montezinos, D., and Delmer, D. P. (1979) Determination of the pore size of the cell walls of living plant cells. Science. 205, 1144-1147.
[21] Serag, M., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., Tokeshi, M., Mizukami, H., Bianco, A., and Baba, Y. (2011) Trafficking and Subcellular Localizatio of Multiwalled Carbon Nanotubes in Plant Cells. ACS Nano. 5, 493-499.
[22] Serag, M., Kaji, N., Tokeshi, M., and Baba, Y. (2012) Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. The Royal Society of Chemistry. 2, 398- 400.
[23] Madani, S. Y., Mandel, A., and Seifalian, A. M. (2013) A concise review of carbon nanotube's toxicology. Nano Rev. 4, 21521.
[24] Charbgoo, F., Behmanesh, M., and Nikkhah, M. (2015) Enhanced reduction of single-wall carbon nanotube cytotoxicity in vitro: Applying a novel method of arginine functionalization. Biotechnol. Appl. Biochem. 62, 598-605.
[25] Chen, C. P., Chou, J. C., Liu, B. R., Chang, M., and Lee, H. (2007) Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett. 581, 1891-1897.
[26] Montanheiro, T. L., and Cristovan, F. H. (2014) Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J. Mater. Res. 30, 55-65.
[27] Sarpong, L. K., Bredol, M., and Schonhoff, M. (2017) Heteroaggregation of multiwalled carbon nanotubes and zinc sulfide nanoparticles. Carbon.
[28] Charbgoo, F., Behmanesh, M., Nikkhah, M., and Kane, E. G. (2017) RNAi mediated gene silencing of ITPA using a targeted nanocarrier: apoptosis induction in SKBR3 cancer cells. Clin. Exp. Pharmacol. Physiol. 44, 888-894.
[29] Richard, C., Mignet, N., Largeau, C., Escriou, V., Bessodes, M., and Scheman, D. (2009) Functionalization of single- and multi-walled carbon nanotubes with cationic amphiphiles for plasmid DNA complexation and transfection. Nano Res. 2, 638-647.