تولید ماهی کایمر حاصل از پیوند درون صفاقی سلول‌های بنیادی اسپرماتوگونی SSCs ماهی آزاد دریای خزر(Salmo caspius) به لارو‌‌های تازه تفریخ شده قزل‌آلای رنگین کمان

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشجو-تربیت مدرس

2 استاد دانشگاه گروه شیلات دانشگاه تربیت مدرس

3 پژوهشگاه رویان

4 توکیو، ژاپن

چکیده
این مطالعه با هدف تولید ماهی کایمر حاصل از پیوند درون صفاقی SSCs ماهی آزاد دریای خزر به لارو‌‌های تازه تفریخ شده قزل‌آلای رنگین کمان اجرا گردید. سلول‌های اسپرماتوگونی از بافت بیضه ماهی آزاد 8 ماهه با روش هضم آنزیمی استخراج شدند. از روش حذف تمایزی برای تخلیص سلول‌های اسپرماتوگونی استفاده شد. پس از 48 ساعت کشت در محیط L15 حاوی سرم 10%، سلول‌های لایه رویی جمع آوری و با رنگ فلورسنت غشایی PKH26 رنگ آمیزی شدند. سلول‌ها به حفره صفاقی لارو‌های تازه تفریخ شده قزل آلای رنگین کمان پیوند شدند. لارو‌ها 15 و 30 روز پس از پیوند با استفاده از میکروسکوپ فلورسنت مورد بررسی قرار گرفتند. 180 روز ماه پس از پیوند گناد ماهیان پیوند شده برای آنالیز‌های مولکولی استخراج شدند. سلول‌های پیوند شده به سمت گناد در حال تکوین قزل آلای رنگین کمان مهاجرت و کلون زایی کردند. حضور سلول‌های ماهی آزاد دریای خزر در 4/41 درصد از گناد ماهیان قزل آلای رنگین کمان با استفاده از PCR تایید شد. نتایج این مطالعه برای اولین بار پیوند موفقیت آمیز بین گونه‌ای را در قزل آلای رنگین کمان نشان داد. این مطالعه نشان داد که سلول‌های سوماتیک قزل آلای رنگین کمان قادرند سلول‌های اسپرماتوگونی ماهی آزاد دریای خزر را حمایت کنند. پیوند بین گونه‌ای سلول‌های اسپرماتوگونی دریچه جدیدی را برای حفاظت نژاد‌های کمیاب و گونه‌های در معرض تهدید گشوده است بنابراین پیوند SSCs به عنوان یک روش کاربردی برای حفاظت ذخایر ژنتیکی این گونه با ارزش قابل پیشنهاد می باشد.

کلیدواژه‌ها

موضوعات


[1] Jalali, M. A., and Mojazi Amiri, B. (2009) Threatened fishes of the world: Salmo trutta caspius (Kessler, 1877) (Salmoniforms: Salmonidae). Environ. Biol. Fish.86, 375-376.
[2] Kalbassi, M. R., Abdollahzadeh, E., and Salari-Joo, H. (2012) A review on aquaculture development in Iran. Ecopersia.1, 159-178.
[3] Chao, N. H., and Liao, I. C. (2001) Cryopreservation of finfish and shellfish gametes and embryos. Aquaculture.197, 161-189.
[4] Zhang, T., Rawson, D. M., Pekarsky, I., Blais, I., and Lubzens, E. (2007) The Fish Oocyte, from Basic Studies to Biotechnological Applications. Springer, PP 412-432.
[5] Robles, V., Cabrita, E., and Herraez, M. P. (2009) Germplasm cryobanking in zebrafish and other aquarium model species. Zebrafish.6, 281-293.
[6] Robey, P. G. (2000) Stem cells near the century mark. J. Clin. Invest.105, 1489-1491.
[7] Lee, S., Iwasaki, Y., Shikina, S., and Yoshizaki, G. (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc. Natl. Acad. Sci. 110, 1640-1645.
[8] Brinster, R. L., and Avarbock, M. R. (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl. Acad. Sci. 91, 11303-11307.
[9] Dobrinski, I., Avarbock, M. R., and Brinster, R. L. (2000) Germ cell transplantation from large domestic animals into mouse testes. Mol. Reprod. Dev.57, 270-279.
[10] Honaramooz, A., Megee, S. O., and Dobrinski, I. (2002) Germ cell transplantation in pigs. Biol. Reprod.66, 21-28.
[11] Honaramooz, A., Behboodi, E., Megee, S. O., Overton, S. A., Galantino-Homer, H., Echelard, Y., and Dobrinsk, I. (2003) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol. Reprod.69, 1260-1264.
[12] Okutsu, T., Suzuki, K., Takeuchi, Y., Takeuchi, T., and Yoshizaki G. (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. 103, 2725-2729.
[13] Okutsu, T., Shikina, S., Kanno, M., Takeuchi, Y., and Yoshizaki G. (2007) Production of trout offspring from triploid salmon parents, Science.317, 1517.
[14] Okutsu, T., Takeuchi, Y., and Yoshizaki G. (2008) Fisheries for Global Welfare and Environment. Terapub, Tokyo, PP 209-219.
[15] Yano, A., Suzuki, K., and Yoshizaki G. (2008) Flow-cytometric isolation of testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions. Biol. Reprod.78, 151-158.
[16] Yoshizaki, G., Fujinuma, K., Iwasaki, Y., Okutsu, T., Shikina, S., Yazawa, R., and Takeuchi, Y. (2011) Spermatogonial transplantation in fish: A novel method for the preservation of genetic resources, Comp. Biochem. Physiol.6D, 55-61
[17] Kobayashi, T., Takeuchi, Y., Takeuchi, T., and Yoshizaki, G. (2007) Generation of viable fish from cryopreserved primordial germ cells. Mol. Reprod. Dev.74, 207-213.
[18] Takeuchi, Y., Higuchi, K., Yatabe, T., Miwa, M., and Yoshizaki, G. (2009) Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol. Reprod.81, 1055-1063.
[19] Lacerda, S. M., Batlouni, S. R., Costa, G. M., Segatelli, T. M., Quirino, B. R., Queiroz, B. M., Kalapothakis, E., and França, L. R. (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One.5, e10740.
[20] Majhi, S. K., Hattori, R. S., Yokota, M., Watanabe, S., and Strüssmann, C. A. (2009) Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines. PLoS One.4, 6132.
[21] Yazawa, R., Takeuchi, Y., Higuchi, K., Yatabe, T., Kabeya, N., and Yoshizaki, G. (2010) Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol. Reprod.82, 896-904.
[22] Kise, K., Yoshikawa, H., Sato, M., Tashiro, M., Yazawa, R., Nagasaka, Y., Takeuchi, Y., and Yoshizaki G. (2012) Flow-cytometric isolation and enrichment of teleost type A spermatogonia based on light scattering properties. Biol. Reprod.86, 1-12.
[23] Silva, M. A., Costa, G. M., Lacerda, S. M., Brandão-Dias, P. F., Kalapothakis, E., Silva Júnior, A. F., Alvarenga, E. R., and França, L. R. (2016) Successful xenogeneic germ cell transplantation from Jundia catfish (Rhamdia quelen) into adult Nile tilapia (Oreochromis niloticus) testes. Gen. Comp. Endocrinol.230-231, 48-56.
[24] Lacerda, S. M., Aponte, P. M., Costa, G. M., Campos-Junior, P. H., Segatelli, T. M., Silva, M. A., and França, L. R. (2012) An overview of spermatogonial stem cell physiology, niche and transplantation in fish. Anim. Reprod.9, 798-808.
[25] Majhi, S. K., Hattori, R. S., Rahman, S. M., and Strüssmann, C. A. (2014) Surrogate Production of Eggs and Sperm by Intrapapillary Transplantation of Germ Cells in Cytoablated Adult Fish. PLoS ONE. 9, e95294.
[26] Hamasaki, M., Takeuchi, Y., Yazawa, R., Yoshikawa, S., Kadomura, K., Yamada, T., Miyaki, K., Kikuchi, K., and Yoshizaki, G. (2016) Production of tiger puffer Takifugu rubripes offspring from triploid grass puffer Takifugu niphobles parents. Mar. Biotechnol.19, 579-591.
[27] Tonelli, F. M. P., Lacerda, S. M. S. N., Paiva, N. C. O., Lemos, M. S., de Jesus, A. C., Pacheco, F. G., Correa Junior, J. D., Ladeira, L. O., Furtado, C. A., França, L. R., and Resende, R. R. (2016) Efficient and safe gene transfection in fish spermatogonial stem cells using nanomaterials. RSC. Advance.6, 52636-52641.
[28] Kalbassi, M .R., Bagheri, A., Pourkazemi, M., and Abdolhay, H. (2003) Induction of tetraploidy in rainbow trout (Oncorhynchus mykiss) by heat shocks. Iran. J. Fish. Sci.4, 143-152.
[29] Kalbassi, M. R., Dorafshan, S., Pourkazemi, M., and Amiri, B. M. (2009) Triploidy induction in the Caspian salmon, Salmo trutta caspius, by heat shock. J. Appl. Ichthyol.25, 104-107
[30] Azari Takami, Gh., Amini, F., and Kalbassi, M. R. (1997) Induction of triploidy in rainbow trout (Oncorhynchus mykiss) by thermal shocks. J. Vet. Res. 2, 51-59.
[31] Bellaiche, J., Jean-Jacques Lareyre, J. J., Cauty, C., Yano, A., Allemand, I., and Le Gac, F. (2014) Spermatogonial stem cell quest: nanos2, marker of a subpopulation of undifferentiated A spermatogonia in trout testis. Biol. Reprod.90, 1-14.
[32] Schulz, R. W., França, L. R. D., Lareyre, J. J., Le Gac, F., Chiarini-Garcia, H., Nobrega, R. H., and Miura, T. (2010) Spermatogenesis in fish. Gen. Comp. Endocrinol.165, 390-411.
[33] Shikina, S., and Yoshizaki, G. (2010) Improved in vitro culture conditions to enhance the survival, mitotic activity, and transplantability of rainbow trout type a spermatogonia. Biol. Reprod.83, 268-276.
[34] Lacerda, S. M., Costa, G. M., Silva, S. M., Campos-Junior, A. P., Segatelli, T. M., Peixoto, M. T., Resende, R. R., and França, L. R. (2013) Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen. Comp. Endocrinol. 192, 95-106.
[35] Panda, R. P., Barman, H. K., and Mohapatra, C. (2011) Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology.76, 241-251.
[36] Nagasawa, K., Shikina, S., Takeuchi, Y., and Yoshizaki, G. (2010) Lymphocyte antigen 75 (Ly75/CD205) is a surface marker on mitotic germ cells in rainbow trout. Biol. Reprod.83, 597-606.
[37] Shikina, S., Nagasawa, K., Hayashi, M., Furuya, M., Iwasaki, Y., and Yoshizaki, G. (2013) Short-term in vitro culturing improves transplantability of type A spermatogonia in rainbow trout (Oncorhynchus mykiss). Mol. Reprod. Dev.80, 763-773.
[38] Manning, M. J., and Nakanishi, T. (1996) The Fish Immune System. Academic Press, New York, PP 159-205.
[39] Bar, I., Smith, A., Bubner, E., Yoshizaki, G., Takeuchi, Y., Yazawa, R., Chen, B.N.,
Cummins, S., and Elizur, A., 2016. Assessment of yellowtail kingfish (Seriola lalandi) as a surrogate host for the production of southern bluefin tuna (Thunnus maccoyii) seed via spermatogonial germ cell transplantation. Reprod. Fertil. Dev. 28, 2051-2064.
[40] Raz, E., and Reichman-Fried, M., 2006. Attraction rules: Germ cell migration in zebrafish. Curr. Opin. Genetics. Dev.16, 355-359.
[41] Yoshizaki, G., Ichikawa, M., Hayashi, M., Iwasaki, Y., Miwa, M., Shikina, S., and Okutsu, T., 2010. Sexual plasticity of ovarian germ cells in rainbow trout. Development.137, 1227-1230.
[42] Yeh, J. R., Zhang, X., and Nagano, M. C. (2007) Establishment of a short-term in vitro assay for mouse spermatogonial stem cells. Biol. Reprod.77, 897-904.