[1] Luengo, J. M., Garcia, B., Sandoval, A., Naharro, G. and Olivera, E. R. (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6(2), 251-260.
[2] Kalia, V. C., Raiada, N. and Sonakya, V. (2000) Bioplastics. J Sci Ind Res. 59, 433-445.
[3] Zinn, M. (2003) Tailor-made synthesis of polyhydroxyalkanoate. European Cells and Materials. 5, 38-39.
[4] Tsuge, T. (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng. 6:579-584.
[5] Volova, T. G., Trusova, M. Y., Kalacheva, G. S. and Kozhevnicov, I. V. (2006) Physiological-biochemical properties and the ability to synthesize polyhydroxyalkanoates of the glucose-utilizing strain of the hydrogen bacterium Ralstonia eutropha B8562. Appllied Microbiology and Biotechnology. 73, 429- 433.
[6] Volova, T. G., Vasiliev, A. D., Zeer, E. P., Petrakovskaya, E. A. and Falaleev, O. V. (2000) Study of the molecular structure of polyhydroxybutyrate, a termoplastic and degradable biopolymer. Biofizika. 45, 445-451.
[7] Kadouri, D., Jurkevitch, E., Okon, Y. and Castro-Sowinski, S. (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Critical Reviews in Microbiology. 31, 55-67.
[8] Ren, Q., Grubelnik, A., Hoerler, M., Ruth, K., Hartmann, R., Felber, H. and Zinn, M. (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules. 6, 2290-2298.
[9] Chen, G. Q., and Wu, Q. (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 26, 6565-6578.
[10] Ozdil, D., and Aydin, H. M. (2014) Polymers for medical and tissue engineering applications. J Chem. Technol Biotechnol. 89(12), 1793-1810.
[11] Akaraonye, E., Keshavarz, T., and Roy, I.(2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol. 85, 732-743.
[12] Albuquerque, MGE., Eiroa, M., Torres, C., Nunes, B. R., and Reis, M. A. M. (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol. 130, 411–421.
[13] Bhattacharyya, A., Pramanik, A., Maji, S. K., Haldar, S., Mukhopadhyay, U. K., and Mukherjee, J. (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express. 9:2(1), 34.
[14] Sathiyanarayanan, G., Kiran, G. S., Selvinc, J., and Saibaba, G. (2013) Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol. 60, 253-261.
[15] Haas, R., Jin, B., and Zepf, F. T. (2008) Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem. 72, 253–256.
[16] Priyadharshini, S., Sajayyan, A., and Ravindran, A. (2018) Optimization and production of Polyhydroxy butyrate from a Marine sponge associated Bacteria MSI21. International Journal of Emerging Technologies and Innovative Research. 5(9), 849-853.
[17] Hahn, S. K., Chang, Y. K., Kim, B. S., Lee, K. M., and Chang, H. N. (1993) The recovery of poly(3-hydroxybutyrate) by using dispersions of sodium hypochlorite solution and chloroform. Biotechnology Techniques. 7(3), 209-212.
[18] Law, J., and Slepecky, R.A. (1961) Assay of poly-beta-hydroxybutyric acid. Journal of Bacteriology. 82, 52–55.
[19] Pal, A., Parbhu, A., Kumar, A. A., Rajagopal, B., Dadhe, K., Pannamma, V., and Shivakumar, S. (2002) Optimization of Process Parameters for Maximum Poly (β) hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Polish Journal of Microbiology. 2, 149-154.
[20] Preethi, R., Sasikala, P., and Aravind, J. (2012) Microbial production of polyhydroxyalkanoate (PHAs) utilizing fruit waste as a substrate. Res in Biotech. 3(1), 61–69.
[21]. Shrivastava, A., Mishraa, S. K., Shethia, B., Pancha, I., Jain, D., and Mishraa, S. (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol. 47, 283–287.
[22] Contreras, A. R., Koller, M., Dias, M. M. S., Monfort, M. C., Braunegg, G., and Calvo, M. S. M. (2013) High production of poly (3-hydroxybutyrate) from a wild Bacillus megaterium bolivian strain. J Appl Microbiol. 114(5), 1378–1387.
[23] Sorokin, D. Y., Tourova, T. P., and Muyzer, G. (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol. 28, 679-687.
[24] Ahn, J., Jho, E. H., and Nam, K. (2015) Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Environmental Engineering Research. 20(3), 246-253.
[25] Goff, M., Ward, P.G., and O’Connor, K.E. (2007) Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J Biotechnol 132:283–286.
[26] Bosco, F., and Chiampo, F. (2010). Production of polyhydroxyalkanoates (PHAs) using milk whey and dairy wastewater activated sludge Production of bioplastics using dairy residues. J. Biosci. Bioeng. 109, 418–421.
[27] Yuan, Q., Sparling, R., and Oleszkiewicz, J. (2020) Polyhydroxybutyrate Production from Municipal Wastewater Activated Sludge with Different Carbon Sources. J. Air, Soil and Water Research. 8(1).
[28] Hong, K., Sun, S., Tian, W., Chen, G. Q., and Huang, W. (1999) A rapid method for detecting bacterial polyhydroxyalkonates in intact cells by Fourier transform infrared spectroscopy. Appl Microbiol Biotechnol. 51, 523–526.