1. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507-517.
2. Burlaka, О.М., Pirko, Ya.V., Yemets, А.І., and Blume, Ya. B(2012) «Green» Synthesis of Metal Nanoparticles: Capacity of Biological Systems and Prospects for Development. Nanostructure Material Science, 4, 89—103
3. Blume, Y. B., Pirko, Y. V., Burlaka, O. M., Borova, M. M., Danylenko, I. A., Smertenko, P. S., & Yemets, A. I.(2015) «Green» Synthesis of Noble Metal Nanoparticles and CdS Semiconductor Nanocrystals Using Biological Materials.
4. Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., ... & Suib, S. L. (2010). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264-271.
5. Duan, H. et al. (2015) Greenchemistryfornanoparticlesynthesis. Chem. Soc.Rev. 44, 5778–5792
6. Krumov, N., Perner‐Nochta, I., Oder, S., Gotcheva, V., Angelov, A., & Posten, C. (2009). Production of inorganic nanoparticles by microorganisms. Chemical engineering & technology, 32(7), 1026-1035
7. Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces, 79(2), 488-493.
8. Ekimov, A. I., & Onushchenko, A. A. (1982). Quantum size effect in the optical-spectra of semiconductor micro-crystals. Soviet Physics Semiconductors-Ussr, 16(7), 775-778.
9. Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., & Brus, L. E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383(6603), 802-804.
10. Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., ... & Weller, H. (2002). Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. The Journal of Physical Chemistry B, 106(29), 7177-7185.
11. Singh, S., Bozhilov, K., Mulchandani, A., Myung, N., & Chen, W. (2010). Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals. Chemical Communications, 46(9), 1473-1475.
12. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
13. Lovrić, J., Bazzi, H. S., Cuie, Y., Fortin, G. R., Winnik, F. M., & Maysinger, D. (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine, 83(5), 377-385.
14. Hoshino, A., Hanaki, K. I., Suzuki, K., & Yamamoto, K. (2004). Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochemical and biophysical research communications, 314(1), 46-53.
15. Al-Shalabi, Z., Stevens-Kalceff, M. A., & Doran, P. M. (2014). Application of Solanum lycopersicum (tomato) hairy roots for production of passivated CdS nanocrystals with quantum dot properties. Biochemical engineering journal, 84, 36-44.
16. Prasad M. N. V. and Strzalka K. (1999), Impact of heavy metals on photosynthesis. In: Heavy Metal Stress in Plants (Prasad M. N. V. and Hagemeyer J., eds.). Springer Publ., Berlin, pp. 117-138
17. Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual review of plant biology, 53(1), 159-182
18. Mehra, R. K., & Winge, D. R. (1991). Metal ion resistance in fungi: molecular mechanisms and their regulated expression. Journal of cellular biochemistry, 45(1), 30-40.
19. Lin, H. H., Han, L. Y., Zhang, H. L., Zheng, C. J., Xie, B., Cao, Z. W., & Chen, Y. Z. (2006). Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach. BMC bioinformatics, 7(Suppl 5), S13.
20. Cedeño López, M. M., & Montenegro Ceballos, D. M. (2004). Plan exportador, logístico y de comercialización de uchuva al mercado de Estados Unidos para FRUTEX¨ PO SCI ltda(Bachelor's thesis, Facultad de Ingeniería).
21. Zavala, D., Mauricio, Q., Pelayo, A., Posso, M., Rojas, J., & Wolach, V. (2006). Citotoxic effect of Physalis peruviana (capuli) in colon cancer and chronic myeloid leukemia. Anales de la Facultad de Medicina, 67(4), 283−289.
22. Franco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Antiinflammatory activity of extracts and fractions obtained from Physalis peruviana L. calyces. Biomedica, 27(1), 110-115.
23. M.N.V. Prasad, Environ. Exp. Bot 35 (1995) 525.
24. Borovaya, M. N., Naumenko, A. P., Matvieieva, N. A., Blume, Y. B., & Yemets, A. I. (2014). Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale research letters, 9(1), 686.
25. Mariya N. Borovaya, Olga M. Burlaka, Antonina P. Naumenko, Yaroslav B. Blume and Alla I. Yemets. (2016). Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture
26. Rizvi, S. B., Ghaderi, S., Keshtgar, M., & Seifalian, A. M. (2010). Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano reviews, 1(1), 5161.
27. Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., & Jose-Yacaman, M. (ّ). Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research, 1(3), 397-404.
28. Sathishkumar, M., Sneha, K., & Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource technology, 101(20), 7958-7965.
29. Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., & Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2), 332-338.
30. Khatami, M., Nejad, M. S., Salari, S., & Almani, P. G. N. (2016). Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET nanobiotechnology, 10(4), 237-243.