بررسی تأثیر انواع سوبستراهای لیگنوسلولزی بر میزان تولید آنزیم سلولاز به روش تخمیر حالت جامد در مقیاس ارلن و بیوراکتور بستر آکنده

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران

چکیده
در این پژوهش تولید آنزیم سلولاز به کمک قارچ تریکودرما ریسی 5142 PTCC بر سه نوع سوبسترای لیگنوسلولزی (سبوس ذرت، خاک اره و سبوس گندم) و درصد ترکیب­های مختلف دو سوبسترای خاک اره و سبوس گندم به روش تخمیر حالت جامد به مدت 6 روز در مقیاس ارلن بررسی شد. سپس در شرایط بهینه نسبت ترکیبات سوبسترا بدست آمده از مقیاس ارلن، تأثیر هوادهی در سه سطح 0.5، 1 و 1.5 لیتر بر ساعت بر گرم سوبسترای خشک اولیه () بر تولید این آنزیم در بیوراکتور بسترآکنده 0.5 لیتری مورد مطالعه قرار گرفت. رطوبت اولیه سوبسترا و pH به ترتیب (w/w) 70% و 5 و دمای گرماگذاری به ترتیب در مقیاس ارلن و بیوراکتور 30 و °C 28 در نظر گرفته شد. بررسی میزان تولید آنزیم سلولاز بر اساس فعالیت دو آنزیم اندوگلوکاناز و اگزوگلوکاناز مورد بررسی قرار گرفت. بیشترین مقدار فعالیت­ آنزیم اندوگلوکاناز و اگزوگلوکاناز در مقیاس ارلن به ترتیب در روز ششم و سوم 13و 6.4 و در بیوراکتور در روز سوم به ترتیب 36 و 10 در شدت هوادهی 1.5 با استفاده از سوبسترا با ترکیب 75% سبوس گندم و 25% خاک اره به دست آمد.

کلیدواژه‌ها

موضوعات


[1] Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 2010;46(7):541-9
[2] Kotchoni SO, and Shonukan OO. Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World Journal of Microbiology & Biotechnology, 2002;18:487-491.
[3] Yazdi MT, Radford A, Keens JN, Woodward JR. Cellulase production by Neurospora crassa: Purification and characterization of cellulolytic enzymes. Enzyme and Microbial Technology, 1990;12(2):120-3.
[4] Nouri H, Sajadi T, Azin M. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140”. Biological Journal of Microorganism, 2017;6(22):1-13.
[5] Darabzadeh N, Hamidi‐Esfahani Z, Hejazi P. Optimization of cellulase production under solid‐state fermentation by a new mutant strain of Trichoderma reesei. Food Science and Nutrition, 2019;7:572-8.
[6] Darabzadeh N, Hamidi‐Esfahani Z, Hejazi P. Improvement of cellulase production and its characteristics by inducing mutation on Trichoderma reesei 2414 under solid state fermentation on rice by-products. Applied Food Biotechnology, 2018;5(1):1-17.
[7] Juhasz T, Szengyel Z, Szijarto N, Reczey K. Effect of pH on cellulase production of Trichoderma reesei RUT C30. Applied Biochemistry and Biotechnology, 2004;4(113):201-11.
[8] Beg QK, Bhushan B, Kapoor M, Hoondal GS. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme and Microbial Technology, 2000;27(7):459-66.
[9] Senthilkumar SR, Ashokkumar B, Raj KC, Gunasekaran P. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresource Technology, 2005;96(12):1380-6.
[10] Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresource Technology, 2006;97(15):1794-1800.
[11] Portnoy T, Margeot A, Seidl-Seiboth V, Crom SL, Chaabane FB, Linke R, Seiboth B, Kubicek CP. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high andlow levels of cellulase. Eukaryot Cell, 2011;10(2):262-71.
[12] Lins SADS, and Conrado LDS. Cellulase Production under Solid State Fermentation in Cashew Apple Bagasse by Trichoderma reesei LCB 48. Defect and Diffusion Forum, 2015;365:323-8.
[13] Salihu A, Abbas O, Sallau AB, Alam MZ. Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech, 2015;5(6):1101-1106.
[14] Lee J. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 1997;(56):1-24.
[15] Howard RL, Abotsi E, Van Rensburg EJ, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2003;2(12):602-19.
[16] Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008;87(6):844-56.
[17] Anderson NE, and Cl Ydesdale FM. An analysis of the dietary fiber, content of astandard wheat bran. Journal of Food Science, 1980;45(2):336-40.
[18] Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Biofules, 2007;108:95-120.
[19] Okeke BC, and Obi SKC. Lignocellulose and sugar compositions of some agro-waste materials. Bioresource Technology, 1994;47(3):283-4.
[20] Dijkerman R, Bhansing DCP, Op den Camp HJM, van der Drift C, Vogels GD. Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: An application study. Enzyme and Microbial Technology, 1997;21(2):130-6.
[21] Anderson NE, and Clydesdale FM. Dietary Fiber Content of Corn Bran. Journal of Food Protection, 1980;43(10):760-2.
[22] Chahal DS. (1983) Growth characteristics of microorganisms in solid state fermentation for upgrading of protein values of lignocelluloses and cellulase production. Foundations of Biochemical Engineering, American Chemical Society, Chapter 20, pp. 421-42.
[23] Lee CK, Ibrahim D, Omar IC. Production and Optimization of Cellulase Enzyme UsingAspergillus nigerUSM AI 1 and Comparison with Trichoderma reeseivia Solid State Fermentation System. Biotechnology Research International, 2011; 658493:1-6.
[24] Mandels M, Weber J. The Production of Cellulases. Advances of Chemistry Series, 1969;95:391-414.
[25] Ghose TK. Measurement of cellulase activities. Pure and Applied Chemistry, 1987;59(2):257-68.
[26] Abdul Manan M, and Webb C. Estimation of growth in solid state fermentation: A review, Malaysian Journal of Microbiology, 2018;14(1):61-69.
[27] Zolfaghari-Esmaeelabadi M, and Hejazi P. A new kinetic model for growth based on simultaneous substrate and biomass limitation in solid-state fermentation using agar spheres as the model substrate. Biochemical Engineering Journal, 2018;136:88-101.
[28] El-Shishtawy RM, Mohamed SA, Asiri AM, Gomaa AB, Ibrahim IH., Al-Talhi HA. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnology, 2014;14(29):2-8.
[29] Shah A, Patel H, Narra M. Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. In: Mérillon JM, and Ramawat KG, editors. Fungal Metabolites. Switzerland: Springer; 2017. pp. 349-393.
[30] Liming X, Xueliang S. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology, 2004;91(3):259-62.
[31] Neagu DA, Destain J, Thonart P., Socaciu C. Trichoderma Reesei Cellulase Produced by Submerged Versus Solid State Fermentations. Bulletin of UASVM Agriculture, 2012;69(2):320-6.
[32] Sun HY, Li J, Zhao P, Peng M. Banana peel- A novel substrate for cellulase production under solid-state fermentation. African Journal of Biotechnology, 2011;10(77):17887-890.
[33] Xia L, and Cen P. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochemistry, 1999;34(9):909-12.
[34] Moosavi-Nasab M, and Majdi-Nasab M. Cellulase Production by Trichoderma reesei using Sugar Beet Pulp. Iran Agricultural Research, 2007;25.26(1.2):107-16.
[35] Latifian M, Hamidi-Esfahani Z, Barzegar M. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 2007;98(18):3634-7.
[36] Xin F, and Geng A. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Applied Biochemistry and Biotechnology, 2010;162(1):295-306.
[37] Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 2011;34(1):1160-7.