ساخت و بررسی خصوصیات نانوکامپوزیت rGO/HAp-Sr حاوی گرافن اکسید احیا شده/ نانو هیدروکسی آپاتیت/استرانسیوم و تعیین پتانسیل القای تمایز استخوانی نانوکامپوزیت

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 مرکز تحقیقات فناوری سلول های بنیادی، تهران، ایران

3 گروه هماتولوژی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
نانومواد مبتنی بر گرافن به دلیل زیست سازگاری و زیست فعال بودنشان، همچنین توانایی آنها در بهبود تمایز استخوانی در حوزه کاربردهای زیست پزشکی مورد بررسی قرار میگیرند. در این مطالعه تحقیقاتی، ورق های کاهش یافته اکسید گرافن (rGO) به عنوان ماده پایه که با هیدروکسی آپاتیت و استرانسیوم بارگذاری شده (rGO/HAp-Sr)، جهت القا تمایز استخوان در سلول های بنیادی مزانشیم چربی مورد استفاده قرار گرفت. برای تعیین خواص این نانوکامپوزیت از تکنیک های آنالیز پراش اشعه ایکس XRD و میکروسکوپ الکترونی عبوری TEM (جهت ارزیابی اندازه و مورفولوژی HAp-Sr بر روی صفحات rGO )، مادون قرمز FT-IR (تجزیه و تحلیل گروههای عملکردی نانوکامپوزیت)، طیف سنجی رامان (برای بررسی اختلالات احتمالی در ساختار نانوکامپوزیت و تعداد لایه ها )، طیف سنجی نوری پلاسمای القایی دوتایی ICP-OES (برای ارزیابی غلظت اتمی عناصر Ca و Sr)، پتانسیل زتا (بارالکتریکی نانوکامپوزیت) و MTT (ارزیابی زیست سازگاری نانوکامپوزیت) استفاده شد. پتانسیل استخوان زایی نانوکامپوزیت سنتز شده با استفاده از آزمون بررسی رسوب کلسیم درسلولهای بنیادی مزانشیمی مشتق از چربی بررسی و تایید شد. با توجه به نتایج بدست آمده القا تمایز استخوان با استفاده از نانوکامپوزیت سنتز شده بدون نیاز به القاگرهای شیمیایی میسر می شود.

کلیدواژه‌ها

موضوعات


1. Vieira, S., et al., Nanoparticles for bone tissue engineering. Biotechnology Progress, 2017. 33(3): p. 590-611.
2. Roohani-Esfahani, S.I., et al., Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomaterialia, 2011. 7(3): p. 1307-1318.
3. Abedin Dargoush, S., et al., Chondroinductive impact of polyethersulfone/benzyl hyaluronate nanofibrous scaffold on human mesenchymal stem cells. Polymers for Advanced Technologies, 2020. n/a(n/a).
4. Valenti, M., L. Dalle Carbonare, and M. Mottes, Osteogenic Differentiation in Healthy and Pathological Conditions. International Journal of Molecular Sciences, 2016. 18(1): p. 41.
5. Gaharwar, A.K., et al., Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules, 2011. 12(5): p. 1641-1650.
6. Boanini, E., M. Gazzano, and A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 2010. 6(6): p. 1882-1894.
7. Shin, S.R., et al., Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 2016. 105: p. 255-274.
8. Landi, E., et al., Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 2003. 23(15): p. 2931-2937.
9. Ravi, N.D., et al., Strontium-Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties. Journal of the American Ceramic Society, 2012. 95(9): p. 2700-2708.
10. Özbek, Y.Y., F.E. Baştan, and F. Üstel, Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications. Journal of Thermal Analysis and Calorimetry, 2016. 125(2): p. 745-750.
11. Guo, D., et al., Development of a strontium-containing hydroxyapatite bone cement. Biomaterials, 2005. 26(19): p. 4073-4083.
12. Capuccini, C., et al., Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. Journal of Biomedical Materials Research Part A, 2009. 89A(3): p. 594-600.
13. Ahmed, M.K., S. Mansour, and R. Al-Wafi, Nanofibrous scaffolds of ε-polycaprolactone containing Sr/Se-hydroxyapatite/graphene oxide for tissue engineering applications. Biomedical Materials, 2020.
14. J. Y. Reginster, E.S., M. C. De Vernejoul, S. Adami, J. Compston, C. Phenekos, J. P. Devogelaer, and A.S. M. Diaz Curiel, S. Goemaere, O. H. Sorensen, D. Felsenberg, and P. J. Meunier, Strontium Ranelate Reduces the Risk of Nonvertebral
Fractures in Postmenopausal Women with Osteoporosis:
Treatment of Peripheral Osteoporosis (TROPOS) Study. 2005.
15. Lee, J.H., et al., Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 2015. 7(27): p. 11642-11651.
16. Zhou, K., et al., Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS nano, 2019. 13(8): p. 9595-9606.
17. Prakash, J., et al., Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. International Journal of Biological Macromolecules, 2020.
18. Ning, Z., et al., Solvothermal Synthesis and Optical Performance of One-dimensional Strontium Hydroxyapatite Nanorod. Chinese Journal of Chemical Engineering, 2012. 20(1): p. 89-94.
19. Suganthi, R.V., et al., Fibrous growth of strontium substituted hydroxyapatite and its drug release. Materials Science and Engineering: C, 2011. 31(3): p. 593-599.
20. Prekajski, M., et al., Ouzo effect—New simple nanoemulsion method for synthesis of strontium hydroxyapatite nanospheres. Journal of the European Ceramic Society, 2016. 36(5): p. 1293-1298.
21. Dresselhaus, M.S., et al., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters, 2010. 10(3): p. 751-758.
22. Cancedda, R., et al., Tissue engineering and cell therapy of cartilage and bone. Matrix Biology, 2003. 22(1): p. 81-91.
23. Tautzenberger, A., Kovtun, and Ignatius, Nanoparticles and their potential for application in bone. International Journal of Nanomedicine, 2012: p. 4545.
24. Liu, Z., et al., Fluorescent sensors using DNA-functionalized graphene oxide. Analytical and Bioanalytical Chemistry, 2014. 406(27): p. 6885-6902.
25. Liu, L., et al., Mechanical properties of graphene oxides. Nanoscale, 2012. 4(19): p. 5910.
26. Chang, Y., et al., In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 2011. 200(3): p. 201-210.
27. Kumar, S. and K. Chatterjee, Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold. Nanoscale, 2015. 7(5): p. 2023-2033.
28. Egles, C., et al., Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. Plos One, 2017. 12(9): p. e0184663.
29. Frasnelli, M., et al., Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration. Materials Science and Engineering: C, 2017. 71: p. 653-662.
30. Xue, W., et al., Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. Journal of Biomedical Materials Research Part A, 2006. 79A(4): p. 804-814.
31. Lee, J.H., et al., Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites. Scientific Reports, 2015. 5(1): p. 18833.
32. Liu, Y., et al., Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon, 2014. 67: p. 250-259.