منابع
[1] W. V. Dashek, Methods in Plant Biochemistry and Molecular Biology, 2018. https://doi.org/10.1201/9781351074483.
[2] R. Maheshwari, G. Bharadwaj, M.K. Bhat, Thermophilic Fungi: Their Physiology and Enzymes, Microbiol. Mol. Biol. Rev. (2000). https://doi.org/10.1128/mmbr.64.3.461-488.2000.
[3] B. Battan, J. Sharma, S.S. Dhiman, R.C. Kuhad, Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry, Enzyme Microb. Technol. 41 (2007) 733–739.
[4] L. Gebicka, E. Banasiak, Flavonoids as reductants of ferryl hemoglobin., Acta Biochim. Pol. 56 (2009) 509–13.
[5] J.S. Eun, K.A. Beauchemin, H. Schulze, Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage, J. Dairy Sci. (2007). https://doi.org/10.3168/jds.S0022-0302(07)71629-6.
[6] X. Li, Y. She, B. Sun, H. Song, Y. Zhu, Y. Lv, H. Song, Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp, Biochem. Eng. J. (2010). https://doi.org/10.1016/j.bej.2010.07.006.
[7] F. Woldesenbet, A.P. Virk, N. Gupta, P. Sharma, Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp, Appl. Biochem. Biotechnol. (2012). https://doi.org/10.1007/s12010-012-9663-2.
[8] B.R. Goluguri, C. Thulluri, M. Cherupally, N. Nidadavolu, D. Achuthananda, L.N. Mangamuri, U. Addepally, Potential of thermo and alkali stable xylanases from Thielaviopsis Basicola (MTCC-1467) in biobleaching of wood kraft pulp, Appl. Biochem. Biotechnol. (2012). https://doi.org/10.1007/s12010-012-9765-x.
[9] M. Ayyachamy, T.M. Vatsala, Production and partial characterization of cellulase free xylanase by Bacillus subtilis C 01 using agriresidues and its application in biobleaching of nonwoody plant pulps, Lett. Appl. Microbiol. (2007). https://doi.org/10.1111/j.1472-765X.2007.02223.x.
[10] D. Verma, T. Satyanarayana, Production of cellulase-free xylanase by the recombinant Bacillus subtilis and its applicability in paper pulp bleaching, Biotechnol. Prog. (2013). https://doi.org/10.1002/btpr.1826.
[11] V.B. Damiano, D.A. Bocchini, E. Gomes, R. Da Silva, Application of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of eucalyptus Kraft pulp, World J. Microbiol. Biotechnol. (2003). https://doi.org/10.1023/A:1023244911314.
[12] N. Kulkarni, A. Shendye, M. Rao, Molecular and biotechnological aspects of xylanases, FEMS Microbiol. Rev. (1999). https://doi.org/10.1016/S0168-6445(99)00006-6.
[13] M. Morrison, P.B. Pope, S.E. Denman, C.S. McSweeney, Plant biomass degradation by gut microbiomes: more of the same or something new?, Curr. Opin. Biotechnol. (2009). https://doi.org/10.1016/j.copbio.2009.05.004.
[14] M.R. Rondon, R.M. Goodman, J. Handelsman, The Earth’s bounty: assessing and accessing soil microbial diversity, Trends Biotechnol. 17 (1999) 403–409.
[15] A. Verenium, Pioneer of 21st Century Bioscience, is Working to Transform Industries, Available Online Www. Diver-Sa. Com (Access 1 July, 2013). (2013).
[16] T. Uchiyama, K. Miyazaki, Functional metagenomics for enzyme discovery: challenges to efficient screening, Curr. Opin. Biotechnol. 20 (2009) 616–622. https://doi.org/10.1016/j.copbio.2009.09.010.
[17] M. Ferrer, A. Beloqui, K.N. Timmis, P.N. Golyshin, Metagenomics for mining new genetic resources of microbial communities, J. Mol. Microbiol. Biotechnol. (2008). https://doi.org/10.1159/000142898.
[18] J.A. Gilbert, C.L. Dupont, Microbial Metagenomics: Beyond the Genome, Ann. Rev. Mar. Sci. (2011). https://doi.org/10.1146/annurev-marine-120709-142811.
[19] Y. Hu, G. Zhang, A. Li, J. Chen, L. Ma, Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach, Appl. Microbiol. Biotechnol. 80 (2008) 823.
[20] X.C. Mo, C.L. Chen, H. Pang, Y. Feng, J.X. Feng, Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture, Appl. Microbiol. Biotechnol. (2010). https://doi.org/10.1007/s00253-010-2712-2.
[21] F. Warnecke, P. Luginbühl, N. Ivanova, M. Ghassemian, T.H. Richardson, J.T. Stege, M. Cayouette, A.C. McHardy, G. Djordjevic, N. Aboushadi, R. Sorek, S.G. Tringe, M. Podar, H.G. Martin, V. Kunin, D. Dalevi, J. Madejska, E. Kirton, D. Platt, E. Szeto, A. Salamov, K. Barry, N. Mikhailova, N.C. Kyrpides, E.G. Matson, E.A. Ottesen, X. Zhang, M. Hernández, C. Murillo, L.G. Acosta, I. Rigoutsos, G. Tamayo, B.D. Green, C. Chang, E.M. Rubin, E.J. Mathur, D.E. Robertson, P. Hugenholtz, J.R. Leadbetter, Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite, Nature. 450 (2007) 560–565. https://doi.org/10.1038/nature06269.
[22] R. Li, R. Kibblewhite, W.J. Orts, C.C. Lee, Molecular cloning and characterization of multidomain xylanase from manure library, World J. Microbiol. Biotechnol. 25 (2009) 2071–2078.
[23] Y. Kobayashi, Inclusion of novel bacteria in rumen microbiology : Need for basic and applied science, (2006) 375–385. https://doi.org/10.1111/j.1740-0929.2006.00362.x.
[24] W.J.A.N.P.C. Zhenming, Y.E.J.L.I.U. Jianxin, Construction and Analysis of Fosmid Library of Rumen Microbiota of Hu Sheep [J], Chinese J. Anim. Nutr. 2 (2010) 18.
[25] Z. Qiu, P. Shi, H. Luo, Y. Bai, T. Yuan, P. Yang, S. Liu, B. Yao, A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry, Enzyme Microb. Technol. (2010). https://doi.org/10.1016/j.enzmictec.2010.02.003.
[26] A. Walia, P. Mehta, S. Guleria, C.K. Shirkot, Modification in the properties of paper by using cellulasefree xylanase produced from alkalophilic cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp, Can. J. Microbiol. (2015). https://doi.org/10.1139/cjm-2015-0178.
[27] H. Liao, S. Sun, P. Wang, W. Bi, S. Tan, Z. Wei, X. Mei, D. Liu, W. Raza, Q. Shen, Y. Xu, A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: Cloning, purification, and insights into the influence of metal ions on xylanase activity, J. Ind. Microbiol. Biotechnol. (2014). https://doi.org/10.1007/s10295-014-1453-0.
[28] M.L.T.M. Polizeli, A.C.S. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, D.S. Amorim, Xylanases from fungi: Properties and industrial applications, Appl. Microbiol. Biotechnol. (2005). https://doi.org/10.1007/s00253-005-1904-7.
[29] A. Walia, S. Guleria, P. Mehta, A. Chauhan, J. Parkash, Microbial xylanases and their industrial application in pulp and paper biobleaching: a review, 3 Biotech. 7 (2017) 11.
[30] J.L. Adrio, A.L. Demain, Microbial enzymes: tools for biotechnological processes, Biomolecules. 4 (2014) 117–139.
[31] J. Gharechahi, H.S. Zahiri, K.A. Noghabi, G.H. Salekdeh, In-depth diversity analysis of the bacterial community resident in the camel rumen, Syst. Appl. Microbiol. 38 (2015) 67–76.
[32] S. Ariaeenejad, E. Hosseini, M. Maleki, K. Kavousi, A.A. Moosavi-Movahedi, G.H. Salekdeh, Identification and characterization of a novel thermostable xylanase from camel rumen metagenome, Int. J. Biol. Macromol. 126 (2019) 1295–1302. https://doi.org/10.1016/j.ijbiomac.2018.12.041.
[33] J. Gharechahi, G.H. Salekdeh, Biotechnology for Biofuels A metagenomic analysis of the camel rumen ’ s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation, Biotechnol. Biofuels. (2018) 1–19. https://doi.org/10.1186/s13068-018-1214-9.
[34] S. Ariaeenejad, M. Maleki, E. Hosseini, K. Kavousi, A.A. Moosavi-Movahedi, G.H. Salekdeh, Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion, Bioresour. Technol. 281 (2019) 343–350. https://doi.org/10.1016/j.biortech.2019.02.059.
[35] L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J.E. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc. 10 (2015) 845.
[36] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, B.A. Cuche, E. De castro, C. Lachaize, P.S. Langendijk-Genevaux, C.J.A. Sigrist, The 20 years of PROSITE, Nucleic Acids Res. (2008). https://doi.org/10.1093/nar/gkm977.
[37] M.J. Bailey, P. Biely, K. Poutanen, Interlaboratory testing of methods for assay of xylanase activity, J. Biotechnol. 23 (1992) 257–270. https://doi.org/10.1016/0168-1656(92)90074-J.
[38] R.D. Kamble, A.R. Jadhav, Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation, Int. J. Microbiol. 2012 (2012).
[39] A. Marchler-Bauer, Y. Bo, L. Han, J. He, C.J. Lanczycki, S. Lu, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, F. Lu, G.H. Marchler, J.S. Song, N. Thanki, Z. Wang, R.A. Yamashita, D. Zhang, C. Zheng, L.Y. Geer, S.H. Bryant, CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures, Nucleic Acids Res. 45 (2017) D200–D203. https://doi.org/10.1093/nar/gkw1129.
[40] N. Boucherba, M. Gagaoua, A.B. Darenfed, C. Bouiche, K. Bouacem, Biochemical properties of a new thermo ‑ and solvent ‑ stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3, Bioresour. Bioprocess. (2017). https://doi.org/10.1186/s40643-017-0161-9.
[41] K. Wang, R. Cao, M. Wang, Q. Lin, R. Zhan, H. Xu, S. Wang, Biotechnology for Biofuels A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1 . 5 L in pretreated corn stover hydrolysis, Biotechnol. Biofuels. (2019) 1–13. https://doi.org/10.1186/s13068-019-1389-8.
[42] S. Ariaeenejad, M. Maleki, E. Hosseini, K. Kavousi, A.A. Moosavi-Movahedi, G.H. Salekdeh, Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion, Bioresour. Technol. 281 (2019). https://doi.org/10.1016/j.biortech.2019.02.059.
[43] C. Ding, M. Li, Y. Hu, High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production, Elsevier B.V, 2018. https://doi.org/10.1016/j.ijbiomac.2018.05.128.
[44] S. Kumar, I. Haq, J. Prakash, S. Kumar, Purification , characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp, 3 Biotech. 7 (2017) 1–12. https://doi.org/10.1007/s13205-017-0615-y.
[45] C. Somboon, S. Boonrung, S. Katekaew, J. Ekprasert, Purification and characterization of low molecular weight alkali stable xylanase from Neosartorya spinosa UZ-2-11 Mycoscience Puri fi cation and characterization of low molecular weight alkali stable xylanase from Neosartorya spinosa UZ-2-11, Mycoscience. 61 (2020) 128–135. https://doi.org/10.1016/j.myc.2020.01.004.
[46] P. V Giridhar, T.S. Chandra, Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp . TSCPVG, 45 (2010) 1730–1737. https://doi.org/10.1016/j.procbio.2010.07.012.
[47] M.S.H. Zheng, L.M.J. Sun, X.Z.J.Z.Y. Liu, F. Lu, Direct cloning , expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob, Biotechnol. Lett. 37 (2015) 1877–1886. https://doi.org/10.1007/s10529-015-1857-6.
[48] B.R. Goluguri, C. Thulluri, U. Addepally, P.R. Shetty, Novel alkali-thermostable xylanase from Thielaviopsis basicola (MTCC 1467): Purification and kinetic characterization, Int. J. Biol. Macromol. 82 (2016) 823–829. https://doi.org/10.1016/j.ijbiomac.2015.10.055.
[49] L. Ping, M. Wang, X. Yuan, F. Cui, D. Huang, W. Sun, B. Zou, S. Huo, H. Wang, Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu, Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.11.130.
[50] B. Kumar, B. Massarat, A.Á.P.Á.A. Á, Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28, (2011) 161–171. https://doi.org/10.1007/s13205-011-0020-x.
[51] D. Sharma, R. Chaudhary, J. Kaur, S.K. Arya, Greener approach for pulp and paper industry by Xylanase and Laccase, Biocatal. Agric. Biotechnol. (2020). https://doi.org/10.1016/j.bcab.2020.101604.
[52] A. Sridevi, A. Sandhya, G. Ramanjaneyulu, G. Narasimha, P.S. Devi, Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching, 3 Biotech. (2016). https://doi.org/10.1007/s13205-016-0480-0.
[53] V.K. Nathan, M.E. Rani, G. Rathinasamy, K.N. Dhiraviam, Low molecular weight xylanase from Trichoderma viride VKF3 for bio-bleaching of newspaper pulp, BioResources. 12 (2017) 5264–5278.
[54] N.V. Kumar, M.E. Rani, R. Gunaseeli, N.D. Kannan, Paper pulp modification and deinking efficiency of cellulase-xylanase complex from Escherichia coli SD5, Int. J. Biol. Macromol. 111 (2018) 289–295.