بررسی اثر آنتی باکتریایی نانوسیال حاوی نانو لوله های کربنی عاملدار بر کلبسیلا پنومونیه

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه زیست شناسی ، دانشکده علوم پایه ، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی ، تهران ، ایران

2 گروه مایکوباکتریولوژی و تحقیقات ریوی، انستیتو پاستور ایران، تهران، ایران

چکیده
کلبسیلا ‌‌‌پنومونیه، باسیل گرم منفی از اعضای خانواده انتروباکتریاسه می باشد و علیرغم اینکه جزئی از میکروفلور طبیعی بدن می باشد، یک پاتوژن فرصت طلب و از عوامل اصلی عفونت های بیمارستانی است. افزایش ظهور مقاومت به چند دارو در کلبسیلا پنومونیه گزینه های درمانی را برای این باکتری محدود کرده است. نانولوله های کربنی (CNT) می توانند با بهبود پایداری و حلالیت دارو، اثربخشی داروها را افزایش دهند. هدف این تحقیق، تهیه و ارزیابی اثر آنتی باکتریال نانوسیال حاوی نانو لوله های کربنی عاملدار(f-CNT-NF) بر کلبسیلا پنومونیه جدا شده از نمونه های بالینی می باشد. برای تائید سویه تست های بیوشیمیایی IMViC، کیتAPI20E و تست های افتراقی تکمیلی انجام گردید. مقاومت آنتی بیوتیکی با روش انتشار دیسک تعیین شد. سویه مورد مطالعه، نسبت به تمامی آنتی بیوتیک(Ab) های مورد بررسی از جمله سفپیم، مقاومت نشان داد. کمترین غلظت مهارکنندگی(MIC) با استفاده از روش میکرو رقت Ab تعیین شد. MIC در 5 حالت اثردهی شاملAb ، f-CNT-NF ، CNT-NF بدون عامل ، Ab به همراه CNT-NF و Ab به همراه f-CNT-NF ، تعیین گردید. علیرغم اینکه اثر دهی 10 µg/ml سفپیم، و µg 80 f-CNT-NF ، به طور جداگانه، رشد باکتری را مهار نکرد، اما اثر دهی همزمان µg/ml 10 سفپیم به همراه µg80 f-CNT-NF ، رشد باکتری را مهار کرد. نتیجه گیری شد که f-CNT-NF می تواند در انتقال دارو در غلظت های پایین تر از حالت آزاد، موثرتر باشد که می تواند به عنوان ابزاری برای بهینه سازی دارو رسانی استفاده شود.

کلیدواژه‌ها

موضوعات


1. Jiang, A.M., Liu N, Said, R.A., Ren, M.D., Gao, H., Zheng, X.Q., Fu, X., Liang, X., Ruan, Z.P., Yao,
Y., and Tian T. (2020) Nosocomial Infections in Gastrointestinal Cancer Patients: Bacterial Profile,
Antibiotic Resistance Pattern, and Prognostic Factors. Cancer Management and Research. 12,
4969–4979.
2. Jean, Sh-Sh., Chang, Y-Ch., Lin, W-Ch., Lee, W-S., Hsueh, P-R., and Hsu Ch-W., (2020)
Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumoniae. J. Clin. Med. 9,
275.
3. Walker, Ch. L., Rudan, I., Liu, L., Nair, H., Theodoratou, E., Bhutta, Z.A., O’Brien, K. L.,
Campbell, H., and, Black, R.E. (2013) Global burden of childhood pneumonia and diarrhea.
Lancet. 381, 1405–16.
4. Yeh, Y.Ch., Huang, T.H., Yang, Sh-Ch, Chen, Ch-Ch., and, Fang, J-Y. (2020) Nano-Based Drug
Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances.
Frontiers in Chemistry. 8, 286.
5. Kramer, A., Schwebke, I., and, Kampf, G. (2006) How long do nosocomial pathogens persist on
inanimate surface? A systemic Review. BMC Infectious Diseases. 6, 130.
6. Zhou, Q., Fan, L., Lai, X., Tan, L., and, Zhang, X. (2019) Estimating extra length of stay and risk
factors of mortality attributable to healthcare-associated infection at a Chinese university
hospital: a multi-state model. BMC Infectious Diseases. 19, 975.
7. Jain, K., Radsak, K., and, Mannheim, W. (1974) Differentiation of the Oxytocum Group from
Klebsiella by Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization. International Journal of
Systematic Bacteriology. 24, 402-407.
8. Marcoleta, A.E.,Varas, M. A., Ortiz-Severín, J., Vásquez, L., Berríos-Pastén, C., Sabag, A.V., P.
Chávez, F.L., Allende, M., Santiviago, C.A., Monasterio, O., and, Lagos, R. (2018) Evaluating
Different Virulence Traits of Klebsiella pneumoniae Using Dictyostelium discoideum and Zebrafish
Larvae as Host Models. Front Cell Infect Microbiol. 8, 30.
9. Murray, P.R., Holmes, B., Aucken. H.M. (2005) citrobacter, klebsiella, Enterobacter, serratia, and
other Enterobacteriaceae, in: Boriello. Int J Pharm Sci. 7, 1, 252-254.
10. Holden, V.I., Wright, M. S., Houle, S. ,Collingwood, A., Dozois, Ch.M., Adams, M. D., and,
Bachmand, M.A. (2018) Iron Acquisition and Siderophore Release by Carbapenem- Resistant
Sequence Type 258 Klebsiella pneumoniae. American society for Microbiology. 125,18.
11. Effah, C. Y., Sun, T., Liu, Sh., and Wu,Y. (2020) Klebsiella pneumoniae: an increasing threat to
public health. Annals of Clinical Microbiology and Antimicrobials. 19,1.
12. Doorduijn, D.J., Rooijakkers, S.H.M., Schaik, W.v., Bardoel, B.W. (2016) Complement resistance
mechanisms of Klebsiella pneumoniae. Immunobiology. 221, 1102-1109.
13. Catalán-Nájera, J.C., Garza-Ramos, U., and, Barrios- Camacho, H. (2017) Hypervirulence and
hypermucoviscosity: Two different but complementary Klebsiella Phenotypes?. Virulence. 8,7,
1111-1123.
14. Gerlach, G-F., Clegg, S., and, Allen, B.L. (1989) Identification and Characterization of the Genes
Encoding the Type 3 and Type 1 Fimbrial Adhesins of Klebsiella pneumoniae Journal of
Bacteriology. 171,3, 1262-1270.
15. Aldred K., Kerns R. J., and, Osheroff, N. (2014) Mechanism of Quinolone Action and Resistance.
Biochemistry. 53, 1565−1574.
16. Zomorodbakhsh, Sh., Abbasian, Y., Naghinejad, M., Sheikhpour, M. (2020) The Effects Study of
Isoniazid Conjugated Multi-Wall Carbon Nanotubes Nanofluid on Mycobacterium tuberculosis.
International Journal of Nanomedicine. 15, 5901–5909.
17. Pitout, J.D.D., Nordmann, P., and, Poirel, L. (2015) Carbapenemase-producing Klebsiella
pneumoniae ,a key pathogen set for global nosocomial dominance. Antimicrob Agents
Chemother. 59, 5873–5884.
18. Zhang, L. (2010) Development of Nanoparticles for Antimicrobial Drug Delivery. Current Medical
Chemistry. 17, 585-594.
19. González-Lavado, E.,Valdivia, L., García-Castaño, A., González, F., Pesquera, C., Valiente, R.,
and, Fanarraga, M. L. (2019) Multi-walled carbon nanotubes complement the anti-tumoral effect
of 5-Fluorouracil. Oncotarget. 10, 21, 2022-2029.
20. García-Hevia, L.,Villegas, J. C., Fernández, F., Casafont, I., González, J., Valiente, R., and,
Fanarraga, M. L. (2016) Multiwalled Carbon Nanotubes Inhibit Tumor Progression in a Mouse
Model. Advanced Healthcare Materials. 5, 1080–1087.
21. Jawed, A., Saxenab, V., and, Pandeya, L.M. (2020) Engineered nanomaterials and their surface
functionalization for the removal of heavy metals: A review. Journal of Water Process Engineering.
33, 101009.
22. Vasilios, G., Kordatos, K., Prato, M., Guldi,D. M., Holzinger, M., and, Hirsch, A. (2002) Organic
Functionalization of Carbon Nanotubes. American Chemical Society. 124, 5, 760-761.
23. Sheikhpour, M., Arabi, M., Kasaeian, A., Rokn Rabei, A., and, Taherian, Z. (2020) Role of
Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications.
Nanotechnology, Science and Applications. 13, 47–59.
24. Le, V. T., Ngo, C. L., Le, Q. T., Ngo, T. T., Nguyen, D.N., and, Vu, M.T. (2013) Surface
modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat.
Sci. Nanosci. Nanotechnol. 4, 035017.
25. Ahmed, D. S., Haider A. J., and, Mohammad, M. R. (2013) Comparesion of Functionalization of
multi walled carbon nanotubes treated by oil olive and nitric acid and their characterization.
Energy Procedia. 36, 1111 –1118.
26. Hoa, L. T. M. (2018) Characterization of multi-walled carbon nanotubes functionalized by a
mixture of HNO3/ H2SO4. Diamond & Related Materials. doi:10.1016/ j.diamond.2018.08.008.
27. Kizildag, N., and, Ucar, N. (2016) Investigation of the properties of PAN/f-MWCNTs/AgNPs
composite nanofibers. Journal of Industrial Textiles. 0(00).
28. Seo, Y., Hwang, J., Kim, J., Jeong, Y., Hwang, M. P., and, Choi, J. (2014) Antibacterial activity
and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles.
International Journal of Nanomedicine. 9, 4621–4629.
29. Sheikhpour, M., Barani, L., and, Kasaeian, A. (2017) Biomimetics in drug delivery systems: A
critical review. Journal of Controlled Release. 76, 1289- 1304.
30. Bhattacharyya, A., Seth, G.S., Kumar, R., And, Chamkha, A. J. (2019) Simulation of Cattaneo–
Christov heat flux on the flow of single and multi-walled carbon nanotubes between two
stretchable coaxial rotating disks. Journal of Thermal Analysis and Calorimetry.
https://doi.org/10.1007/s10973-019-08644-4.
31. M 100 Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. (2020) A
CLSI supplement for global application. 69-76.
32. Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, Kh., and, Adibkia, Kh. (2015) 32.
Antimicrobial Activity of Carbon-Based Nanoparticles. Adv Pharm Bull. 5, 19-23.
33. Saleemi, M A., Hosseini Fouladi, M., Chen Yong, PV., and Wong, EH. (2020) Elucidation of
Antimicrobial Activity of Non-Covalently Dispersed Carbon Nanotubes. Materials. 13, 1676.
34. Baptista, P.V., McCusker, M.P., Carvalho, A., Ferreira, D.A., Mohan, N.M., Martins, M., and
Fernandes A.R. (2018) Nano-Strategies to Fight Multidrug Resistant Bacteria, A Battle of the
Titans. Front Microbiol. 9,1441.
35. Yañez-Macías, R., Muñoz-Bonilla, A., De Jesús-Tellez, M.A., Maldonado-Textle, H., Guerrero-
Sánchez, C., Schubert, U. S., and, Guerrero-Santos, R. (2019) Combinations of Antimicrobial
Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers. 11, 1789.
36. Shakoor, S., Zaidi, K.M. (2020) Hunter's Tropical Medicine and Emerging Infectious Diseases
(Tenth Edition), Elsevier, 159-164.
37. Zahraei , S.M., Eshrati, B., Masoumi Asl, H.,and, Pezeshki, Z. (2012) Epidemiology of Four Main
Nosocomial Infections in Iran. Archives of Iranian Medicine. 15, 764-766.
38. Eybpoosh, S., Eshrati, B. (2019) Nosocomial Infection Surveillance System: Structures, Processes
and Achievements. Iranian Journal of Epidemiology.15,1, 105-115.
39. Taufiq Musa, M., Shaari, N., and, Kamarudin, S.K. (2020) Carbon nanotube, graphene oxide and
montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview.
Int J Energy Res. 1–38.
40. Mitchell, M.J, M., Billingsley, M., Haley, R. M., Wechsler, M. E., Peppas, N. A., and Langer, R.
(2021) Engineering precision nanoparticles for drug delivery. Drug Discovery. 20,103, 101-124.
41. Patra, J. K., Das, G., Fraceto, L. F., Ramos Campos, E. V., Rodriguez‑Torres, M. P.,
Acosta‑Torres, L. S., Diaz‑Torres, L. A., Grillo, R., Swamy, M. K., Sharma, Sh., Habtemariam, S.,
and, Shin, H. S. (2018) Nano based drug delivery systems: recent developments and future
prospects. Journal of Nanobiotechnology. 16:71.
42. Song, W., Moland, E. S., Hanson, N.D., Lewis, J. S., Jorgensen, J. H., and Thomson, K. S. (2005)
Failure of Cefepime Therapy in Treatment of Klebsiella pneumoniae Bacteremia. Journal of
Clinical Microbiology. 43, 9, 4891–4894.
43. Francis, A. P., and Devasena, T. (2017) Toxicity of carbon nanotubes: A review. Toxicology and
Industrial Health. 34, 200-210.
44. Kavosi, A., Hosseini Ghale Noei, S., Madani, S., Khalighfard, S., Khodayari, S., Khodayari, H.,
Mirzaei, M., Kalhori, M.R., Yavarian, M., Mohammad Alizadeh, A., and, Falahati, M. (2018) The
toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer.
Scientific Reports. 8, 8375.
45. Mocan, T., Matea, C. T., Pop, T., Mosteanu, B., Buzoianu, A. D., Suciu, S., Puia, C., Zdrehus,
Iancu, C., Mocan, C. (2017) Carbon nanotubes as anti-bacterial agents. Cell. Mol. Life Sci. 74,
3467–3479.
46. Saleemi, M A., Hosseini Fouladi, M., Chen Yong, P.V., and Wong, EH. )2020 (Elucidation of
Antimicrobial Activity of Non-Covalently Dispersed Carbon Nanotubes. Materials. 13, 1676.
47. Wypij, M., Czarnecka, J., Świecimska, M., Dahm, H., Rai, M., Golinska, P. (2018) Synthesis,
characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver
nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World Journal of
Microbiology and Biotechnology. 34,23.
48. Tam, N.T., Phuong, N.V., Khoi, P.H., Minh, P. N., Afrand, M., Trinh, P. V., Thang, B. H., Zyła, G.,
and Estellé, P. (2020) Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar
Absorption. Nanomaterials. 10, 1199.
49. Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Newaz Kazi, S., Sadeghinezhad, E., Zubir, N. (2014)
An experimental study on thermal conductivity and viscosity of nanofluids containing carbon
nanotubes. Nanoscale Research Letters. 9:151.
50. Khazi-Syed, A., Hasan, Md. T., Campbell, E., Gonzalez-Rodriguez, R., and Naumov, A. V. (2019)
Single-Walled Carbon Nanotube-Assisted Antibiotic Delivery and Imaging in S. epidermidis Strains
Addressing Antibiotic Resistance. Nanomaterials. 9, 1685.
51. Kon, K., and, Rai, M. (2016) Antibiotic Resistance Mechanisms and New Antimicrobial
Approaches. Elsevier, 130-134.