بهینه‌سازی تولید گاما-دکالاکتون توسط سویه جهش‌یافته مخمر یارروویا لیپولیتیکا با روش سطح پاسخ

نوع مقاله : پژوهشی اصیل

نویسندگان

1 استاد میکروبیولوژی، گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهرا، تهران، ایران

2 کارشناسی ارشد زیست فناوری میکروبی، دانشکده علوم پایه، دانشگاه مراغه، مراغه، ایران.

چکیده
امروزه مواد معطر کاربرد وسیعی در صنایع غذایی، دارویی و آرایشی دارند. با توجه به گرایش روزافزون مصرف‌کنندگان به استفاده از محصولات طبیعی، زیست‌تبدیلی با استفاده از میکروارگانیسم‌ها به یک روش جالب توجه برای تولید ترکیبات معطر تبدیل شده است. گاما-دکالاکتون یک استر حلقوی معطر با عطر و طعم مشابه هلو است. مخمر یارروویا لیپولیتیکا قادر به زیست‌تبدیلی سوبسترای ارزان قیمت روغن کرچک به ماده ارزشمند گاما-دکالاکتون می‌باشد. شروع این فرایند با هیدرولیز این روغن به وسیله آنزیم لیپاز به اسید ریسینولئیک آغاز شده سپس با کوتاه شدن زنجیره به وسیله بتا-اکسیداسیون ادامه یافته و در نهایت با لاکتونیزاسیون پایان می‌یابد. در این تحقیق، تولید گاما-دکالاکتون از طریق روش سطح پاسخ (RSM) توسط سویه جهش یافته این مخمر با توانایی تولید مقادیر بالای لیپاز بهینه شد. بدین منظور چهار عامل روغن‌کرچک، عصاره مخمر، پپتون و pH هرکدام در پنج سطح مورد بررسی قرار گرفتند. بر اساس تجزیه و تحلیل‌های آماری روابط حاکم بر متغیرهای آزمایش، یک مدل ریاضی برای روابط حاکم بین متغیرهای آزمایش بدست آمد. بهترین مقادیر برای روغن‌کرچک 35 میلی‌لیتر در لیتر، عصاره مخمر۶ گرم‌در‌لیتر، پپتون 5/8 گرم‌در لیتر و برای pH عدد 4 به دست آمد. مقادیر پیشنهادی به صورت تجربی مورد آزمایش قرار گرفتند که در نتیجه 126 میلی گرم در لیتر گاما-دکالاکتون توسط سویه مخمر تولید شد که مقدار محصول تولید شده در مقایسه با شرایط غیربهینه 46 درصد افزایش را نشان داد. نتایج این تحقیق می‌تواند برای مقرون به صرفه کردن تولید زیستی گاما-دکالاکتون از روغن کرچک با فرآیند زیست‌تبدیلی میکروبی به کار رود.

کلیدواژه‌ها

موضوعات


1. Parker JK, Elmore S, Methven L. Flavour development, analysis and perception in food and beverages. Amsterdam: Elsevier; 2014.
2. Siek T, Albin I, Sather L, Lindsay R. Comparison of flavor thresholds of aliphatic lactones with those of fatty acids, esters, aldehydes, alcohols, and ketones. Journal of Dairy Science. 1971;54(1):1-4.
3. Arctander S. Perfume and flavor chemicals: Aroma chemicals. Michigan: Allured Publishing Corporation; 1969.
4. Gopinath M, Vijayakumar L, Dhanasekar R, Viruthagiri T. Microbial biosynthesis of γ-decalactone and its application-a review. Global J Biotechnol Biochem. 2008;3(2):60-8.
5. Endrizzi A, Awadé AC, Belin J-M. Presumptive involvement of methyl ricinoleate β-oxidation in the production of γ-decalactone by the yeast Pichia guilliermondii. Fems Microbiology Letters. 1993;114(2):153-9.
6. Darvishi F, Chen H. Microbial Biotechnology: Progress and Trends. Florida: CRC Press; 2018.
7. Johnson EA, Echavarri-Erasun C. Yeast biotechnology. The Yeasts. Amsterdam: Elsevier; 2011. p. 21-44.
8. Darvishi F. Biotechnological applications of the yeast Yarrowia lipolytica. New York: Springer; 2014.
9. Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. BioMed Research International. 2009;2009(1):114-9.
10. Fickers P, Benetti P-H, Waché Y, Marty A, Mauersberger S, Smit M, et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS yeast research. 2005;5(6-7):527-43.
11. Alchihab M, Destain J, Aguedo M, Wathelet J-P, Thonart P. The utilization of gum tragacanth to improve the growth of Rhodotorula aurantiaca and the production of γ-decalactone in large scale. Applied biochemistry and biotechnology. 2010;162(1):233-41.
12. Rong S, Yang S, Li Q, Cai B, Guan S, Wang J, et al. Improvement of γ-decalactone production by stimulating the import of ricinoleic acid and suppressing the degradation of γ-decalactone in Saccharomyces cerevisiae. Biocatalysis and Biotransformation. 2017;35(2):96-102.
13. Waché Y, Aguedo M, Nicaud J-M, Belin J-M. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Applied microbiology and biotechnology. 2003;61(5-6):393-404.
14. Hussain MS, Rodriguez GM, Gao D, Spagnuolo M, Gambill L, Blenner M. Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. Aims Bioeng. 2016;3(4):493-514.
15. Marella ER, Dahlin J, Dam MI, Ter Horst J, Christensen HB, Sudarsan S, et al. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids. Metabolic engineering. 2020;61(2):427-36.
16. Romero-Guido C, Belo I, Ta TMN, Cao-Hoang L, Alchihab M, Gomes N, et al. Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Applied Microbiology and Biotechnology. 2011;89(3):535-47.
17. Darvishi F, Ariana M, Marella ER, Borodina I. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Applied microbiology and biotechnology. 2018;102(14):5925-38.
18. Boualem K, Waché Y, Garmyn D, Karbowiak T, Durand A, Gervais P, et al. Cloning and expression of genes involved in conidiation and surface properties of Penicillium camemberti grown in liquid and solid cultures. Research in Microbiology. 2008;159(2):110-7.
19. Lee K-M, Gilmore DF. Statistical experimental design for bioprocess modeling and optimization analysis. Applied Biochemistry and Biotechnology. 2006;135(2):101-15.
20. Khuri AI, Mukhopadhyay S. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2(2):128-49.
21. Darvishi F, Faraji N, Shamsi F. Production and structural modeling of a novel asparaginase in Yarrowia lipolytica. International journal of biological macromolecules. 2019;125(1):955-61.
22. Darvishi F, Salmani N, Hosseini B. Biovalorization of vegetable oil refinery wastewater into value‐added compounds by Yarrowia lipolytica. Journal of Chemical Technology & Biotechnology. 2019;94(9):2961-8.
23. Darvishi F, Moradi M, Jolivalt C, Madzak C. Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. Ecotoxicology and environmental safety. 2018;165(1):278-83.
24. Gatfield I. Some aspects of the microbiological production of flavor-active lactones with particular reference to γ-decalactone. Food Chemistry, Microbiology, Technology. 1993;15:165-70.
25. Haffner T, Tressl R. Biosynthesis of (R)-γ-decanolactone in the yeast Sporobolomyces odorus. Journal of Agricultural and Food Chemistry. 1996;44(5):1218-23.
26. Spinnler HE, Ginies C, Khan JA, Vulfson EN. Analysis of metabolic pathways by the growth of cells in the presence of organic solvents. Proceedings of the National Academy of Sciences. 1996;93(8):3373-6.
27. Feron G, Bonnarme P, Durand A. Prospects for the microbial production of food flavours. Trends in Food Science & Technology. 1996;7(9):285-93.
28. Feron G, Dufosse L, Pierard E, Bonnarme P, Quere J, Spinnler H. Production, Identification, and Toxicity of (gamma)-Decalactone and 4-Hydroxydecanoic Acid from Sporidiobolus spp. Applied and Environmental Microbiology. 1996;62(8):2826-31.
29. Waché Y, Aguedo M, Choquet A, Gatfield IL, Nicaud J-M, Belin J-M. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Applied and Environmental Microbiology. 2001;67(12):5700-4.
30. Escamilla Garcia E. Aspects of the degradation of hydrophobic substances into flavor compounds by the yeast Yarrowia lipolytica. France: Dijon University; 2008.
31. Moradi H, Asadollahi MA, Nahvi I. Optimaztion of gamma-decalactone production by yeast Yarrowia lipolytica using the taguchi method. Journal of Microbiology, Biotechnology & Food Sciences. 2016;6(1).
32. Gomes N, Teixeira JA, Belo I. Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnology Letters. 2012;34(4):649-54.
33. Aguedo M, Beney L, Waché Y, Belin J-M. Interaction of an odorant lactone with model phospholipid bilayers and its strong fluidizing action in yeast membrane. International Journal of Food Microbiology. 2003;80(3):211-5.
34. Try S, Voilley A, Chunhieng T, De-Coninck J, Waché Y. Aroma compounds production by solid state fermentation, importance of in situ gas-phase recovery systems. Applied Microbiology and Biotechnology. 2018;102(17):7239-55.
35. Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H. High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate. New biotechnology. 2011;28(6):756-60.
36. Mather JP, Roberts PE. Introduction to cell and tissue culture: theory and technique. 1 ed. New York: Springer Science & Business Media; 1998.
37. Zhao Y, Mu X, Nie Y, Xu Y. A new rapid spectrophotometric quantitative determination method for γ-decalactone and application in high throughput screening for γ-decalactone producing strains. Food Science and Biotechnology. 2014;23(6):1935-40.
38. Moradi H, Asadollahi MA, Nahvi I. Optimaztion of gamma-decalactone production by yeast Yarrowia lipolytica using the taguchi method. Journal of Microbiology, Biotechnology and Food Sciences. 2016;2021(1):685-8.
39. Mazloum-Ravasan S, Madadi E, Fathi Z, Mohammadi A, Mosafer J, Mansoori B, et al. The effect of Yarrowia lipolytica L-asparaginase on apoptosis induction and inhibition of growth in Burkitt's lymphoma Raji and acute lymphoblastic leukemia MOLT-4 cells. International Journal of Biological Macromolecules. 2020;146(1):193-201.
40. Liu Z, Moradi H, Shi S, Darvishi F. Yeasts as microbial cell factories for sustainable production of biofuels. Renewable and Sustainable Energy Reviews. 2021;143(1):110907.
41. Maume K, Cheetham P. The production of γ-decalactone by fermentation of castor oil. Biocatalysis. 1991;5(2):79-97.
42. An J-U, Joo Y-C, Oh D-K. New biotransformation process for production of the fragrant compound γ-dodecalactone from 10-hydroxystearate by permeabilized Waltomyces lipofer cells. Applied and Environmental Microbiology. 2013;79(8):2636-41.
43. Alchihab M, Destain J, Aguedo M, Majad L, Ghalfi H, Wathelet J-P, et al. Production of Gamma-decalactone by a psychrophilic and Mesophilic strain of the yeast Rhodotorula aurantiaca. Applied Biochemistry and Biotechnology. 2009;158(1):41-50.
44. Prasad MV, Narayana AV, Raju CA, Venkateswarulu T, Swamy A. Optimum production of γ-decalactone by Sporidiobolus salmonicolor using Response Surface Methodology. Journal of ChemTech Research. 2014;6(7):3478-86.
45. Braga A, Belo I. Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica. World Journal of Microbiology and Biotechnology. 2016;32(10):169.
46. Neto R, Pastore G, Macedo G. Biocatalysis and biotransformation producing γ‐decalactone. Journal of food science. 2004;69(9):C677-C80.
47. Braga A, Belo I. Production of γ‐decalactone by Yarrowia lipolytica: insights into experimental conditions and operating mode optimization. Journal of Chemical Technology & Biotechnology. 2015;90(3):559-65.
48. Darvishi F, Moradi M, Madzak C, Jolivalt C. Production of laccase by recombinant Yarrowia lipolytica from molasses: bioprocess development using statistical modeling and increase productivity in shake-flask and bioreactor cultures. Applied Biochemistry and Biotechnology. 2017;181(3):1228-39.