1. Helikar, T., et al., Emergent decision-making in biological signal transduction networks. Proceedings of the National Academy of Sciences, 2008. 105(6): p. 1913-1918.
2. Janda, C.Y., et al., Structural basis of Wnt recognition by Frizzled. Science, 201. (6090)337.2p.59-64.
3. Sever, R. and J.S. Brugge, Signal transduction in cancer. Cold Spring Harbor perspectives in medicine, 2015. 5(4): p. a006098.
4. MacDonald, B.T., K. Tamai, and X. He, Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental cell, 2009. 17(1): p. 9-26.
5. Sonderegger, S., J. Pollheimer, and M. Knöfler, Wnt signalling in implantation, decidualisation and placental differentiation–review. Placenta, 2010. 31(10): p. 839-847.
6. Lybrand, D.B., et al., Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo. Development, 2019. 146(13): p. dev164145.
7. Taciak, B., et al., Wnt signaling pathway in development and cancer. J Physiol Pharmacol, 2018. 69(10,26402)
8. Jung, Y.-S. and J.-I. Park, Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Experimental & Molecular Medicine, 2020: p. 1-9.
9. Liu, C.-C., et al., LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proceedings of the National Academy of Sciences, 2010. 107(11): p. 5136-5141.
10. Yang, L., et al., FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene, 2011. 30(43): p. 4437-4446.
11. Steinhart, Z. and S. Angers, Wnt signaling in development and tissue homeostasis. Development, 2018. 145(11): p. dev146589.
12. King, T.D., et al., Frizzled7 as an emerging target for cancer therapy. Cellular signalling, 2012. 24(4): p. 846-851.
13. Fernandez, A., et al., The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proceedings of the National Academy of Sciences, 2014. 111(4): p. 1409-1414.
14. Merle, P., et al., Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology, 2004. 127(4): p. 1110-1122.
15. Phesse, T., D. Flanagan, and E. Vincan, Frizzled7: a promising Achilles’ heel for targeting the Wnt receptor complex to treat cancer. Cancers, 2016. 8(5): p. 50.
16. Gurney, A., et al., Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences, 2012. 109(29): p. 11717-11722.
17. Nile, A.H., et al., A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nature chemical biology, 2018. 14(6): p. 582.
18. Song, W., H. Wang, and Q. Wu, Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene, 2015. 569(1): p. 1-6.
19. Kong, X., et al., Natriuretic peptide receptor a as a novel anticancer target. Cancer research, 2008. 68(1): p. 249-256.
20. Serafino, A., et al., Anti-proliferative effect of atrial natriuretic peptide on colorectal cancer cells: Evidence for an Akt-mediated cross-talk between NHE-1 activity and Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2012. 1822(6): p. 1004-1018.
21. Hirai, H., et al., Crystal structure of a mammalian Wnt–Frizzled complex. Nature structural & molecular biology, 2019. 26(5): p. 372-379.
22. Kumar, S., et al., Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity. BMC biology, 2014. 12: (1)p. 44.