سنتز و شناسایی نانوذرات زیست سازگار کیتوسان/آمینوتترازول بعنوان نانوحامل جدید جهت تحویل ژن

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی

2 پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

چکیده
در این مقاله تلاش شده است تا یک نانو حامل جدید و زیست سازگار بر پایه بیوپلیمر کیتوسان، با کارایی بسیار بالا و کمترین سمیت جهت انتقال ژن ارائه شود. ابتدا، 5-آمینو-H1-تترازول با ترکیب 3-کلرو پروپیل تری متوکسی سیلان وارد واکنش شده، س‍‍پس، حدواسط اورگانوسیلانی حاصل، جهت عامل دار کردن گروه های آمینی کیتوسان مورد استفاده قرار گرفت. ساختار و ترکیب شیمیایی نانوحامل سنتز شده، بطور کامل توسط آنالیزهایFESEM, TEM, XRD, FTIR, Zeta potential و DLS بررسی و شناسایی شد. در ادامه، جهت بررسی میزان سمیت نانوحامل، تست MTT انجام شد. همچنین، جهت بررسی توانایی نانوحامل مورد نظر در انتقال ژن به داخل سلول، از رده سلولی Hek-293T استفاده گردید. مقدار بهینه ظرفیت بارگیری پلاسمید در نسبت N/P=3 با میزان محافظت قابل قبول از پلاسمید در برابر آنزیم های نوکلیاز بدست آمد. نتایج نشان داد که این نانوحامل جدید، علاوه بر سمیت بسیار پایین، زیست سازگار و مقرون بصرفه بودن، بسیار کارآمد و دارای توانایی بالا در انتقال و محافظت از ژن می باشد.

کلیدواژه‌ها

موضوعات


[1] Patil, S. D., Rhodes, D. G., and Burgess, D. J. (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 7, E61-E77.
[2] Nishikawa, M., and Hashida, M. (2002) Nonviral approaches satisfying various requirements for effective in vivo gene therapy. Biol. Pharm. Bull. 25, 275-283.
[3] George, M., and Abraham T. E. (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan. J. Control. Release 114, 1-14.
[4] Dornish, M., Kaplan, D. S., and Arapalli, S. R. (2012) Regulatory status of chitosan and derivatives. Chapter 24. In Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, B., Sarmento, J. Das Neves, Eds.; Wiley, Chihester, 463- 482.
[5] Meyers, P. H., Cronic, F., and Nice, C. M. (1963) Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 90, 1068-077.
[6] Iravani-Kashkouli, K., Torkzadeh-Mahani, M., and Mosaddegh, E. (2018) Synthesis and characterization of magnetic amino-functionalized chitosan nanoparticle as a novel nanocarrier for targeted gene delivery. Mat. Sci. Eng. C accepted.
[7] Germershaus, O., Mao, S., Sitterberg, J., Bakowsky, U., and Kissel, T. (2008) Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J. Control. Release. 125, 145-154.
[8] Lee, D., Zhang, W., Shirley, S. A., Kong, X., Hellermann, G. R., Lockey, R. F., and Mohapatra, S. S. (2007) Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm. Res. 24, 157-167.
[9] Gan, Q., Wang, T., Cochrane, C., and McCarron, P. (2005) Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B: Biointerfaces 44, 65-73.
[10] Qu, J-B., Shao, H-H., Jing, G-L., and Huang, F. (2013) PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: preparation, characterization and cytotoxicity studies. Colloids Surf. B: Biointerfaces 102, 37-44.
[11] dos Santos Menegucci, J., Santos, M-K. M. S., Dias, D. J. S., Chaker, J. A., and Sousa, M. H. (2015) One-step synthesis of magnetic chitosan for controlled release of 5-hydroxytryptophan. J. Magn. Magn. Mat. 380, 117-124.
[12] Li, G., Song, P., Wang, K., Xue, Q., Sui, W., and Kong, X. (2015) An amphiphilic chitosan derivative modified by deoxycholic acid: preparation, physicochemical characterization, and application. J. Mat. Sci. 50, 2634-2642.
[13] Silva, S. M. L., Braga, C. R. C., Fook, M. V. L., Raposo, C. M. O., Carvalho, L. H., and Canedo, E. L. W. (2012) Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. Infrared spectroscopy–materials science, engineering and technology. Theophanides Theophile, InTech.
[14] Shrifian-Esfahani, A., Salehi, M. T., Nasr-Esfahani, M., and Ekramian, E. (2015) Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK 69, 19–32.
[15] Brugnerotto, J., Lizardi, J., Goycoolea, F. M., ArguEelles-Monalc, W., DesbrieAres, J., and Rinaudo, M. (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42, 3569–3580.
[16] Ostrowska-Czubenko, J., and Pierog, M. (2009) Synthesis and characteristics of chemically modified chitosan membranes with sulfuric acid. Polish J. Appl. Chem. 53, 155–160.
[17] Kolhe, P., and Kannan, R .M. (2003) Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interaction. Biomacromolecules 4, 173-180.
[18] de Souza Costa-Junior, E., Pereira, M. M., and Mansur, H. S. (2009) Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. Mater. J. Sci.: Mater. Med. 20, 553-561.
[19] Krishna Rao, K. S. V., Vijaya Kumar Naidu, B., Subha Sairam M. C. S. M., and Aminabhavi, T. M. (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohyd. Polym. 66, 333-344.
[20] Ramya, R., Sudha, P. N., and Mahalakshmi, J. (2012) FT-IR study of montmorillonite–chitosan nanocomposite materials. J. Sci. Res. 2, 1-9.
[21] Paluszkiewicz, C., Stodolak, E., Hasik, M., and Blazewicz, M. F. (2011) T-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochimica Acta Part A. 79, 784-788.
[22] Yuan, Z., Ye, Y., Gaoa, F., Yuanc, H., Lan, M., Lou, K., and Wang, W. (2013) Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int. J. Pharm. 446, 191– 198.
[23] Ding, J., Na, L., and Mao, S. (2012) Chitosan and its derivatives as the carrier for intranasal drug delivery. Asian J. Pharm. Sci. 7, 349-361.
[24] Cavalli, R., Bisazza, A., Trotta, M., Argenziano, M., Civra, A., Donalisio, M., and Lembo, D. (2012) New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int. J. Nanomed. 7, 3309-3318.
[25] Mohammadi, Z., Dorkoosh, F. A., Hosseinkhani, S., Amini, T., Rahimi, A. A., Rouholamini Najafabadi, A., and Rafiee Tehrani, M. (2012) Stability studies of chitosan-DNA-FAP-B nanoparticles for gene delivery to lung epithelial cells. Acta Pharm. 62, 83–92
[26] Lu, H., Dai, Y., and Lv, L. (2014) Huiqing ZhaoChitosan-Graft-Polyethylenimine/DNA Nanoparticles as Novel Non-Viral Gene Delivery Vectors Targeting Osteoarthritis., PLOS ONE 9(1), 1-12.
[27] Liu, T., Chen, S., Zhang, S., Wu, X., Wu, P., Miaoc, B., and Cai, X. (2018) Transferrin-functionalized chitosan-graft-poly(L-lysine) dendrons as a high-efficiency gene delivery carrier for nasopharyngeal carcinoma therapy. J. Mat. Chem. B, 26,
[28] Razi Soofiyani1, S., Hallaj-Nezhadi, S., Lotfipour, F., Hosseini, A. M., and Baradaran, B. (2016) Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma. Basic Med. Sci. 19, 1238-1244
[29] Baghdan, E., Pinnapireddy, S. R., Strehlow, B., Engelhardt, K.H., Schäfer, J., and Bakowsky, U. (2017) Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int. J. Pharm. 535, 473-479.