بررسی بیوانفورماتیک miRNA های دخیل در بیماری از کار افتادگی زودرس تخمدان (POF)

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشجوی دامپزشکی، گروه دامپزشکی، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران

2 دانشجوی دکتری، گروه ژنتیک مولکولی، دانشگاه تربیت مدرس، تهران، ایران

3 استادیار، گروه زیست شناسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار، گروه جنین شناسی، مرکز تحقیقات پزشکی تولید مثل، پژوهشگاه رویان، تهران، ایران

5 عضو هیئت علمی پژوهشگاه رویان

چکیده
هدف مطالعه: نارسایی زودرس تخمدان[1](POF) یکی از مهمترین بیماریهای تولید مثلی در خانم های زیر 40 سال بوده که با ایجاد عوارض کوتاه مدت و بلند مدت بر کیفیت زندگی و طول عمر این افراد موثر است.

بیمار طی این بیماری از مراحلی همچون بی کفایتی زودرس تخمدان ها (POI)[2]و کاهش ذخیره تخمدانی (DOR)[3] عبورکرده، در مراحل ابتدایی بیماری بازده عملکردی تخمدان ها کاهش یافته (POI)و در ادامه و با پیشرفت بیشتر بیماری، بیمار دچار کاهش ذخیره تخمدان و کاهش بیشتر عملکرد و از کار افتادگی زودرس و در نهایت از کارافتادگی کامل تخمدان ها و یا POF آنها می شود. عوامل متعددی از جمله عوامل ژنتیکی در ایجاد این بیماری دخالت دارند. بررسی های ژنتیکی نشان داده است که ژن های متعددی در بروز این بیماری نقش دارند. بخشی از تنظیم بیان این ژن ها، بر عهده عوامل ژنتیکی کوچکی به نام miRNA ها می باشد.

مواد و روش ها: در مطالعه حاضر، اطلاعات بیوانفورماتیکی miRNA های دخیل در این بیماری مورد بررسی قرار گرفته است. بدین منظور از پایگاه های داده ژنتیکی از جمله UCSC، NCBI، KEGG، MIRBASE، TARGET SCAN، STRING و ... جهت دسترسی به ژن های دخیل در این بیماری، ارتباط ساختاری و عملکردی، مسیرهای پیام رسانی و miRNA تنظیم کننده آن استفاده گردید.

نتایج و نتیجه‌گیری: نتایج این مطالعه، حاکی از آن است که سه عامل miRNA-187، miRNA-33b و miRNA-33a در ایجاد و پیشرفت این بیماری بسیار موثر می باشند.


[1] Premature Ovarian Failure

[2] Primary ovarian insufficiency

[3] Diminished ovarian reserve

کلیدواژه‌ها

موضوعات


1. Woad, K.J., W.J. Watkins, D. Prendergast, and A.N. Shelling, The genetic basis of premature ovarian failure. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2006. 46(3): p. 242-244.
2. Guo, Y., J. Sun, and D. Lai, Role of microRNAs in premature ovarian insufficiency. Reproductive Biology and Endocrinology, 2017. 15(1): p. 38.
3. Jankowska, K., Premature ovarian failure. Przeglad menopauzalny= Menopause review, 2017. 16(2): p. 51.
4. Goswami, D. and G.S. Conway, Premature ovarian failure. Human reproduction update, 2005. 11(4): p. 391-410.
5. Toner, J.P., C.B. Philput, G.S. Jones, and S.J. Muasher, Basal follicle-stimulating hormone level is a better predictor of in vitro fertilization performance than age. Fertility and sterility, 1991. 55(4): p. 784-791.
6. Sherman, B.M. and S.G. Korenman, Hormonal characteristics of the human menstrual cycle throughout reproductive life. The Journal of clinical investigation, 1975. 55(4): p. 699-706.
7. Scott, R.T., J.P. Toner, S.J. Muasher, S. Oehninger, S. Robinson, and Z. Rosenwaks, Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertility and sterility, 1989. 51(4): p. 651-654.
8. Luborsky, J.L., P. Meyer, M. Sowers, E.B. Gold, and N. Santoro, Premature menopause in a multi‐ethnic population study of the menopause transition. Human Reproduction, 2003. 18(1): p. 199-206.
9. Coulam, C.B., S.C. Adamson, and J.F. Annegers, Incidence of premature ovarian failure. Obstetrics and gynecology, 1986. 67(4): p. 604-606.
10. Wood, J.W., Fecundity and natural fertility in humans. Oxford reviews of reproductive biology, 1989. 11: p. 61.
11. Zangmo, R., N. Singh, and J. Sharma, Diminished ovarian reserve and premature ovarian failure: A review. IVF Lite, 2016. 3(2): p. 46.
12. Kauffman, R.P. and V.D. Castracane, Premature ovarian failure associated with autoimmune polyglandular syndrome: pathophysiological mechanisms and future fertility. Journal of Women's Health, 2003. 12(5): p. 513-520.
13. Colafrancesco, S., C. Perricone, L. Tomljenovic, and Y. Shoenfeld, Human papilloma virus vaccine and primary ovarian failure: another facet of the autoimmune/inflammatory syndrome induced by adjuvants. American Journal of Reproductive Immunology, 2013. 70(4): p. 309-316.
14. Bianco, B., K.C. Oliveira, A.D. Guedes, C.P. Barbosa, M.V. Lipay, and I.T. Verreschi, OCT4 gonadal gene expression related to the presence of Y-chromosome sequences in Turner syndrome. Fertility and sterility, 2010. 94(6): p. 2347-2349.
15. Bianco, B., M.V.N. Lipay, A.D. Guedes, and I.T. Verreschi, Clinical implications of the detection of Y-chromosome mosaicism in Turner's syndrome: report of 3 cases. Fertility and sterility, 2008. 90(4): p. 1197. e17-1197. e20.
16. Lin, H.J., F. Ndiforchu, and S. Patell, Exstrophy of the cloaca in a 47, XXX child: review of genitourinary malformations in triple‐X patients. American journal of medical genetics, 1993. 45(6): p. 761-763.
17. Villanueva, A.L. and R.W. Rebar, Triple-X syndrome and premature ovarian failure. Obstetrics and gynecology, 1983. 62(3 Suppl): p. 70s-73s.
18. Goswami, R., D. Goswami, M. Kabra, N. Gupta, S. Dubey, and V. Dadhwal, Prevalence of the triple X syndrome in phenotypically normal women with premature ovarian failure and its association with autoimmune thyroid disorders. Fertility and sterility, 2003. 80(4): p. 1052-1054.
19. Persani, L., R. Rossetti, C. Cacciatore, and M. Bonomi, Primary ovarian insufficiency: X chromosome defects and autoimmunity. Journal of autoimmunity, 2009. 33(1): p. 35-41.
20. Sybert, V.P. and E. McCauley, Turner's syndrome. New England Journal of Medicine, 2004. 351(12): p. 1227-1238.
21. Bodega, B., S. Bione, L. Dalpra, D. Toniolo, F. Ornaghi, W. Vegetti, E. Ginelli, and A. Marozzi, Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Human Reproduction, 2006. 21(4): p. 952-957.
22. Oral, E., G. Toksoy, N. Sofiyeva, H.G. Celik, B. Karaman, S. Basaran, A. Azami, and Z.O. Uyguner, Clinical and Genetic Investigation of Premature Ovarian Insufficiency Cases from Turkey. Journal of Gynecology Obstetrics and Human Reproduction, 2019. 48(10): p. 817-823.
23. Bione, S. and D. Toniolo. X chromosome genes and premature ovarian failure. in Seminars in reproductive medicine. 2000. Copyright© 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New ….
24. Bodega, B., C. Porta, P. Crosignani, E. Ginelli, and A. Marozzi, Mutations in the coding region of the FOXL2 gene are not a major cause of idiopathic premature ovarian failure. Molecular human reproduction, 2004. 10(8): p. 555-557.
25. Di Pasquale, E., R. Rossetti, A. Marozzi, B. Bodega, S. Borgato, L. Cavallo, S. Einaudi, G. Radetti, G. Russo, and M. Sacco, Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. The Journal of Clinical Endocrinology & Metabolism, 2006. 91(5): p. 1976-1979.
26. Lechowska, A., S. Bilinski, Y. Choi, Y. Shin, M. Kloc, and A. Rajkovic, Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown. Journal of assisted reproduction and genetics, 2011. 28(7): p. 583-589.
27. Tosh, D., H.S. Rani, U.S. Murty, A. Deenadayal, and P. Grover, Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure. Menopause, 2015. 22(5): p. 520-526.
28. Lourenço, D., R. Brauner, L. Lin, A. De Perdigo, G. Weryha, M. Muresan, R. Boudjenah, G. Guerra-Junior, A.T. Maciel-Guerra, and J.C. Achermann, Mutations in NR5A1 associated with ovarian insufficiency. New England Journal of Medicine, 2009. 360(12): p. 1200-1210.
29. Zhe, J., S. Chen, X. Chen, Y. Liu, Y. Li, X. Zhou, and J. Zhang, A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. Journal of ovarian research, 2019. 12(1): p. 61.
30. Bouali, N., B. Francou, J. Bouligand, D. Imanci, S. Dimassi, L. Tosca, M. Zaouali, S. Mougou, J. Young, and A. Saad, New MCM8 mutation associated with premature ovarian insufficiency and chromosomal instability in a highly consanguineous Tunisian family. Fertility and sterility, 2017. 108(4): p. 694-702.
31. de Vries, L., D.M. Behar, P. Smirin-Yosef, I. Lagovsky, S. Tzur, and L. Basel-Vanagaite, Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. The Journal of Clinical Endocrinology & Metabolism, 2014. 99(10): p. E2129-E2132.
32. Guo, T., S. Zhao, S. Zhao, M. Chen, G. Li, X. Jiao, Z. Wang, Y. Zhao, Y. Qin, and F. Gao, Mutations in MSH5 in primary ovarian insufficiency. Human molecular genetics, 2017. 26(8): p. 1452-1457.
33. Zhao, H., Y. Qin, E. Kovanci, J.L. Simpson, Z.-J. Chen, and A. Rajkovic, Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertility and sterility, 2007. 88(5): p. 1474-1476.
34. Styer, A.K. and T.L. Toth, Antral follicle count in clinical practice: building the bridge from ovarian reserve to in vitro fertilization outcome. Fertility and sterility, 2011. 95(2): p. 480-481.
35. Muttukrishna, S., H. McGarrigle, R. Wakim, I. Khadum, D. Ranieri, and P. Serhal, Antral follicle count, anti‐mullerian hormone and inhibin B: predictors of ovarian response in assisted reproductive technology? BJOG: An International Journal of Obstetrics & Gynaecology, 2005. 112(10): p. 1384-1390.
36. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010. 11(9): p. 597-610.
37. Wienholds, E. and R.H. Plasterk, MicroRNA function in animal development. FEBS letters, 2005. 579(26): p. 5911-5922.
38. Gleicher, N. and D.H. Barad, The FMR1 gene as regulator of ovarian recruitment and ovarian reserve. Obstetrical & gynecological survey, 2010. 65(8): p. 523-530.
39. Kostrzewska-Poczekaj, M., E. Byzia, N. Soloch, M. Jarmuz-Szymczak, J. Janiszewska, E. Kowal, J. Paczkowska, K. Kiwerska, M. Wierzbicka, and A. Bartochowska, DIAPH2 alterations increase cellular motility and may contribute to the metastatic potential of laryngeal squamous cell carcinoma. Carcinogenesis, 2019. 40(10): p. 1251-1259.
40. Ledig, S., S. Preisler-Adams, S. Morlot, T. Liehr, and P. Wieacker, Premature ovarian failure caused by a heterozygous missense mutation in POF1B and a reciprocal translocation 46, X, t (X; 3)(q21. 1; q21. 3). Sexual Development, 2015. 9(2): p. 86-90.
41. Uhlenhaut, N.H. and M. Treier, Foxl2 function in ovarian development. Molecular genetics and metabolism, 2006. 88(3): p. 225-234.
42. Otsuka, F., K.J. McTavish, and S. Shimasaki, Integral role of GDF‐9 and BMP‐15 in ovarian function. Molecular reproduction and development, 2011. 78(1): p. 9-21.
43. Bouilly, J., A. Bachelot, I. Broutin, P. Touraine, and N. Binart, Novel NOBOX loss‐of‐function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort. Human mutation, 2011. 32(10): p. 1108-1113.
44. Bayne, R.A., S.J. Martins da Silva, and R.A. Anderson, Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary. Molecular human reproduction, 2004. 10(6): p. 373-381.
45. Caburet, S. and É. Vilain, STAG3 in premature ovarian failure. Medecine sciences: M/S, 2015. 31(2): p. 129.
46. Pu, D., C. Wang, J. Cao, Y. Shen, H. Jiang, J. Liu, B. Wu, W. Zhang, and J. Wu, Association analysis between HFM1 variation and primary ovarian insufficiency in chinese women. Clinical Genetics, 2016. 89(5): p. 597-602.
47. Zhang, Y.X., W.B. He, W.J. Xiao, L.L. Meng, C. Tan, J. Du, G.X. Lu, G. Lin, and Y.Q. Tan, Novel loss‐of‐function mutation in MCM8 causes premature ovarian insufficiency. Molecular Genetics & Genomic Medicine, 2020. 8(4): p. e1165.
48. Mallery, D.L., B. Tanganelli, S. Colella, H. Steingrimsdottir, A.J. van Gool, C. Troelstra, M. Stefanini, and A.R. Lehmann, Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. The American Journal of Human Genetics, 1998. 62(1): p. 77-85.
49. Bolcun-Filas, E., R. Speed, M. Taggart, C. Grey, B. de Massy, R. Benavente, and H.J. Cooke, Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS genetics, 2009. 5(2).
50. Luling, X., L. Tingting, Y. Ping, X. Yueyun, and X. Keqian, Relationship between MSH5 gene C85T polymorphism and premature ovary failure. Journal of Hunan Normal University (Medical Sciences), 2012(1): p. 10.
51. Chand, A.L., A.P. Ponnampalam, S.E. Harris, I.M. Winship, and A.N. Shelling, Mutational analysis of BMP15 and GDF9 as candidate genes for premature ovarian failure. Fertility and sterility, 2006. 86(4): p. 1009-1012.
52. Kasak, L., M. Punab, L. Nagirnaja, M. Grigorova, A. Minajeva, A.M. Lopes, A.M. Punab, K.I. Aston, F. Carvalho, and E. Laasik, Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. The American Journal of Human Genetics, 2018. 103(2): p. 200-212.
53. Li, J.-Y., Y.-F. Liu, H.-Y. Xu, J.-Y. Zhang, P.-P. Lv, M.-E. Liu, Y.-Y. Ying, Y.-Q. Qian, K. Li, and C. Li, Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. Journal of Molecular Cell Biology, 2020. 12(1): p. 71-83.