سنتز سبز نانوذرات زیرکونیا با استفاده از مخمر Saccharomyces cerevisiae و قارچ Colletotrichum gloeosporioides

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه بین المللی امام خمینی، قزوین، ایران

2 دانشگاه پیام نور، قم،ایران

چکیده
امروزه استفاده از انواع قارچ­ها به‌عنوان منبع ترکیبات فعال زیستی مانند پروتئین­ها برای بیوسنتز انواع نانوذرات توسعه پیدا کرده است. در این تحقیق ویژگی­های نانوذرات بیوسرامیکی زیرکونیای بیوسنتز شده توسط قارچ­های ساکارومایسس سرویزیه و کولتوتریکوم گلوسپوریویدس مورد مقایسه قرارگرفته است. بیوسنتز خارج سلولی نانوذرات زیرکونیا (ZrO2 NPs) با اضافه کردن محلول 1 میلی­مولار از K2ZrF6 به محیط کشت­های دو قارچ به شکل جداگانه انجام شد. بیوسنتز نانوذرات زیرکونیا توسط تغییر رنگ، ایجاد کدورت محیط کشت، طیف‌سنجی نور فرا­بنفش و پراش اشعه ایکس تائید شد. نتایج FTIR اثرات برخی از ترکیبات ترشحی قارچ­ها مانند پروتئین­ها، الکل و فنل­ها را در فرآیند بیوسنتز و ثبات نانوذرات ثابت کرد. نتایج تجزیه عنصری (EDAX) تشکیل نانو ذرات زیرکونیا و همچنین برخی از عناصر موجود در ترکیبات آلی شرکت کننده در فرایند بیوسنتزی را تائید نمود. اثر گذشت زمان بر فرآیند بیوسنتز نانوذرات نیز توسط اسپکتروفوتومتری موردبررسی قرار گرفت. تغییر رنگ، کدورت محیط کشت، تشکیل پیک در کمتر از nm 300 در اسپکتروفتومتری، نوع نانوذره را مشخص کرده و همچنین نتایج XRD ماهیت کریستالی نانوذرات زیرکونیای بیوسنتزی بر اساس اندازه بلورها را تائید نمود. نتایج میکروسکوپ الکترونی روبشی نشر میدانی (FESEM)، بیشتر نانوذرات را بی­شکل و برخی از آن‌ها را مونوکلینیک با اندازه های (nm60/35 و 49/19) برای کولتوتریکوم گلوسپوریویدس و ( nm07/74 و 81/45) برای ساکارومایسس سرویزیه نشان داد. ساختار مونوکلینیک نانو ذرات بیوسنتزی توسط نتایج UV، FTIR و XRD تائید شد.

کلیدواژه‌ها

موضوعات


1- Shimizu K, Cha J, Stucky GD, Morse DE. Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA. 1998; 95(11):6234-38.
2- Kröger N, Deutzmann R, Bergsdorf C, Sumper M. Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci USA. 2000; 97(26):14133-14138.
3- Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res. 2013; 12(1): 7-11.
4- Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios. 2012; 7: 999-1005.
5- Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F. Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol. 2013; 13(2):1427-1430.
6- Honary S, Gharaei-Fathabad E, Paji ZK, Eslamifar M. A novel biological synthesis of gold nanoparticle by Enterobacteriaceae family. Trop J Pharm Res. 2012; 11(6):887-891.
7- Rai M, Yadav A, Gade A. Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol. 2008; 28(4): 277-284.
8- Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbial Biotechnol. 2014; 98(19): 8083-8097.
9- Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbial Biotechnol. 2015; 99(11): 4579-4593.
10- Yong P, Rowson AN, Farr JPG, Harris IR, Mcaskie LE. Bioaccumulation
of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol. 2002; 55: 593-601.
11- Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001; 1(10): 515-519.
12- Heuer AH. Transformation toughening in ZrO2‐containing ceramics. J Am Ceram Soc. 1987; 70(10): 689-698.
13- Hulbert SF. The use of alumina and zirconia in surgical implants. Bioceram Dev Appl. 2013; 1: 27-47.
14- Jalill RD, Jawad MMHM, Abd AN. Plants extracts as green synthesis of zirconium oxide nanoparticles. J Genet Environ Resour Conserv. 2017; 5(1): 6-23.
15- Gowri S, Gandhi RR, Sundrarajan M. Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J Mater Sci Technol. 2014; 30(8):782-790.
16- Balaji S, Mandal BK, Ranjan S, Dasgupta N, Chidambaram R. Nano-zirconia–evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B. 2017; 170: 125-133.
17- Xu H, Qin DH, Yang Z, Li HL. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater Chem Phys. 2003; 80(2): 524-528.
18- Bansal V, Rautaray D, Sastry M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem B. 2004; 14(22): 3303-3305.
19- Noh HJ, Seo DS, Kim H, Lee JK. Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Mater Lett. 2003; 57(16-17): 2425-2431.
20- Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem. 2002; 3(5): 461-463.
21- Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. Life with 6000 genes. Science 1996; 274(5287): 546-563.
22- Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet. 2005; 37(6): 630-635.
23- Mina M, Tsaltas D. Contribution of Yeast in Wine Aroma and Flavour. In: Morata A. and Loira I., editors. Yeast Industrials Applications. 1th ed. Croatia, JT: InTech; 2017: 117-134.
24- Ehrlich F. Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweissaufbau der Hefe. Berichte der deutschen chemischen Gesellschaft 2006; 40(1): 1027-1047.
25- Lambrechts MG, Pretorius IS. Yeast and its importance to wine aroma-A Review. South African J Enol Vitic. 2000; 21: 97–129.
26- Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immonul. 2008; 145(1): 58-86.
27- Falahati M, Ghanbari S, Ebrahimi M, Ghazanfari M, Bazrafshan F, Farahyar S, Falak R. Fractionation and identification of the allergic proteins in Aspergillus species. Curr Med Mycol. 2016; 2(4): 37-45.
28- Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res. 2006; 5(4): 954-962.
29- Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 1998; 62(1): 130-180.
30- Schneiter R, Di Pietro A. The CAP protein superfamily: function in sterol export and fungal virulence. Biomol Concepts. 2013; 4(5):519-525.
31- Frey SD, Elliott ET, Paustian K, Peterson GA. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biol Biochem. 2000; 32(5):689-698.
32- Frey SD, Six J, Elliott ET. Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface. Soil Biol Biochem. 2003; 35(7):1001-1004.
33- Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem. 1994; 26(10): 1305-1311.
34- Higuchi T. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol .1990; 24(1):23-63.
35- Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J biopesticides. 2010; 3(1): 394-399.
36- Sathishkumar M, Sneha K, Yun YS. Green fabrication of zirconia nano-chains using novel Curcuma longa tuber extract. Mater Lett. 2013; 98:242-245.
37- Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R. One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mat Sci Eng C. 2019; 105:1-10.
38- Raja K, Saravanakumar A, Vijayakumar R. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim Acta A Mol Biomol Spectrosc. 2012; 97: 490–494.
39- Raju D, Mehta UJ, Ahmad A. Biosynthesis of highly stable intra and extracellular gold nanoparticles by using live peanut (Arachis hypogaea) callus cells. Curr Nanosci. 2013; 9(1): 107-112.
40- Pirtarighat S, Ghannadnia M, Baghshahi S. Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application. Mat Sci Eng C. 2019; 98:250-255.
41- Ghabooli A, Mirzaei S. Biosynthesis of Silver Nanoparticles using Aspergillus Flavus and Investigation of some Effective Factors in its Production. Biol J Micro. 2018; 27: 80-94.
42- Raghad DH, Abdul J, Maryam MHM. Jawad M, Ahmed NA. Plants extracts as green synthesis of zirconium oxide nanoparticles. J Genet Environ Conserv. 2017; 5(1): 6-23.
43- Geethalakshmi K, Prabhakaran T, Hemalatha J. Dielectric studies on nano zirconium dioxide synthesized through co-precipitation process. World Acad Sci Eng Technol. 2012; 6(4): 256-279.
44- Walker GM. Yeast physiology and biotechnology; ChiChester, UK, New York USA: John Wiley and Sons; 1998.
45- Walker GM. Yeasts. In: Schaechter, M., editor. Eukaryotic Microbe. Oxford, UK: Academic Press/Elsevier Science Publishers; 2011: 3–17.
46- Walker GM, Stewart GG. Saccharomyces cerevisiae in the production of fermented beverages. Beverages. 2016; 2(30):1-12.
47- Guocheng W, Fanhao M, Chuanxian D, Paul KC, Xuanyong L. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface. Acta Biomater. 2010; 6: 990-1000.
48- Augustine R, Augustine A, Kalarikkal L, Thomas S. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog Biomater. 2016; 5: 223–235.
49- Khoshnamvand M, Huo C, Liu J. Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: Characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. J Mol Struct. 2019; 1175: 90-96.
50- Li D, Kaner RB. Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc. 2006; 128(3): 968-975.
51- Shanthi S, Tharani SSN. Green Synthesis of Zirconium Dioxide (ZrO2) Nano
Particles Using Acalypha Indica Leaf Extract. 2016; 3(4): 23-25.
52- Ghaseminezhad SM, Hamedi S, Shojaosadati SA. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr Polym. 2012; 89(2): 467- 472.
53- Luo LB, Yu SH, Qian HS, Zhou T. Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc. 2005; 127(9): 2822-2823.
54- Sanghi R, Verma P. pH dependent fungal proteins in the ‘green’ synthesis of gold nanoparticles. Adv Mater Lett. 2010; 1(3): 193-199.
55- Pavia D, Lampman GM, Kriz GS, Vyvyan JA. Introduction to spectroscopy. 5rd ed. USA: Cengage Learning; 2013.
56- Kumar RR, Priyadharsani KP, Thamaraiselvi K. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanoparticle Res. 2012; 14(5): 1-7.
57- Tekarslan-Sahin SH, Alkim C, Sezgin T. Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering. Bosn j basic med sci. 2018; 18(1):55-65.
58- Loghman-Estarki MR, Hajizadeh-Oghaz M, Edris H, Razavi RS. Comparative studies on synthesis of nanocrystalline Sc2O3–Y2O3 doped zirconia (SYDZ) and YSZ solid solution via modified and classic Pechini method. CrystEngComm. 2013; 15(29): 5898-5909.
59- Ghotekar S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J Green Chem. 2019; 3(2): 187-200.
60- Zarghani M, Akhlaghinia B. Green and efficient procedure for Suzuki–Miyaura and Mizoroki–Heck coupling reactions using palladium catalyst supported on phosphine functionalized ZrO2 NPs (ZrO2@ ECP-Pd) as a new reusable nanocatalyst. Bull. Chem Soc Jpn. 2016; 89(10):1192-1200.
61- Yan H, He J, Liu X, Wang H, Liu J, Ding X. Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15–773.15 K and 100 MPa. J Solution Chem. 2020; 49(6):836-848.
62- Brown pL, Curti E, Grambow B. Chemical Thermodynamics of Zirconium. Amsterdam: Elsevier; 2005.
63- Rasaee I, Ghannadnia M, Baghshahi S. Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Micropor Mesopor Mat. 2018; 264: 240-247.