A review on microRNAs target prediction with bioinformatics tools in biomedical research

Document Type : Analytic Review

Authors

Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran

Abstract
MicroRNAs are a group of small non-coding RNAs that regulate gene expression in eukaryotes at the post-transcriptional level. MicroRNAs, through regulating the expression of large numbers of mRNAs, act as major regulators of various biological processes such as embryonic development, cell proliferation, differentiation, and apoptosis. Therefore, the identification of microRNAs and their target genes is very effective in finding the mechanisms of embryonic development, growth, and also the processes underlying the induction and progression of various diseases. Because of the high costs of molecular experiments, the identification of effective microRNAs through bioinformatics tools and computational biology is faster and cheaper than the experimental methods. Several online bioinformatics tools and databases have been developed and are freely available for predicting microRNAs target genes. The available online tools use a broad range of information, including sequencing data, gene expression data, and computational algorithms for predicting microRNAs target genes. Some of the most important of these online tolls are miRWalk, TargetScan, RNAhybrid, Diana-microT, miRanda, and MirTarget. The four main features of the interaction between a microRNA and an mRNA, including seed pairing, sequence conservation, free energy, and access to the binding site in a target are used in the algorithm of all of these prediction tools. This stud aimed to review the latest findings on the characteristics and capabilities of microRNA target prediction tools, comparing the performance of these tools, and finally introducing the most efficient tool in the field of target gene prediction for bioinformatics, biomedicine, and molecular medicine studies.

Keywords

Subjects


1- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2): 281-297.
2- Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 2006; 103 (46): 17337-17342.
3- Ambros V. The functions of animal microRNAs. Nature 2004; 431 (7006): 350-355.
4- Parvini N, Ahmadi S. Role of MicroRNAs in Development of Immune Cells and Nervous System and their Relation to Multiple Sclerosis. Shefaye Khatam 2015; 3 (1): 131-144.
5- Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci 2020; 21 (5).
6- Yapijakis C. Regulatory Role of MicroRNAs in Brain Development and Function. Adv Exp Med Biol 2020; 1195: 237-247.
7- Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST. MicroRNAs: Key Players in Microglia and Astrocyte Mediated Inflammation in CNS Pathologies. Curr Med Chem 2016; 23 (30): 3528-3546.
8- van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briedé JJ. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 2020; 185: 101732.
9- Danka Mohammed CP, Park JS, Nam HG, Kim K. MicroRNAs in brain aging. Mech Ageing Dev 2017; 168: 3-9.
10- Putteeraj M, Fairuz YM, Teoh SL. MicroRNA Dysregulation in Alzheimer's Disease. CNS Neurol Disord Drug Targets 2017; 16 (9): 1000-1009.
11- Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis 2020; 35 (5): 681-693.
12- Backes C, Meese E, Keller A. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol Diagn Ther 2016; 20 (6): 509-518.
13- Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic Review of miRNA as Biomarkers in Alzheimer's Disease. Mol Neurobiol 2019; 56 (9): 6156-6167.
14- Mazumder S, Datta S, Ray JG, Chaudhuri K, Chatterjee R. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol 2019; 58: 137-145.
15- Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39 (Database issue): D152-157.
16- Riffo-Campos Á L, Riquelme I, Brebi-Mieville P. Tools for Sequence-Based miRNA Target Prediction: What to Choose? Int J Mol Sci 2016; 17 (12).
17- Juźwik CA, S SD, Zhang Y, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182: 101664.
18- Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell 2004; 16 (6): 861-865.
19- Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9 (2): 102-114.
20- Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 2005; 309 (5740): 1519-1524.
21- Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002; 30 (4): 363-364.
22- Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115 (7): 787-798.
23- Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18 (5): 504-511.
24- Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004; 32 (Database issue): D109-111.
25- Dweep H, Sticht C, Gretz N. In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions. Curr Genomics 2013; 14 (2): 127-136.
26- Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Front Genet 2014; 5: 23.
27- Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol 2005; 3 (3): e85.
28- Mazière P, Enright AJ. Prediction of microRNA targets. Drug Discov Today 2007; 12 (11-12): 452-458.
29- Wuchty S, Fontana W, Hofacker IL, Schuster P. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 1999; 49 (2): 145-165.
30- Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999; 288 (5): 911-940.
31- Watanabe Y, Tomita M, Kanai A. Computational methods for microRNA target prediction. Methods Enzymol 2007; 427: 65-86.
32- Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 2010; 42 (4): 233-244.
33- Mahen EM, Watson PY, Cottrell JW, Fedor MJ. mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol 2010; 8 (2): e1000307.
34- Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol 2007; 14 (4): 287-294.
35- Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011; 18 (10): 1139-1146.
36- Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19 (1): 92-105.
37- Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11 (8): R90.
38- Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27 (1): 91-105.
39- Kiriakidou M, Nelson PT, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004; 18 (10): 1165-1178.
40- Dweep H, Sticht C, Pandey P, Gretz N. miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform 2011; 44 (5): 839-847.
41- Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. Rna 2004; 10 (10): 1507-1517.
42- Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 2019; 20 (1): 18.
43- Koraei M, Ahmadi S. Comparing the predictions of microRNA’s target genes related to Alzheimer's disease with online bioinformatics tools. Journal of Health and Biomedical Informatics 2021; In Press: [In Persian].
44- Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019; 20 (5): 1836-1852.