پروتئین مورفوژنتیک استخوان- 2 و کاربردهای آن در پزشکی

نوع مقاله : مروری تحلیلی

نویسندگان

1 کارشناسی ارشد رشته بیوشیمی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار گروه بیوشیمی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
پروتئین­های مورفوژنتیک استخوان (BMPs) یک زیرخانواده از ابر خانواده چند عملکردی فاکتور رشد تغییر دهنده بتا (TGF-β ) هستند؛از این رو از نظر بیوسنتز، ساختار، پیام رسانی و عملکرد زیستی شباهت بسیاری با سایر اعضای این ابرخانواده دارند. آن ها در فرآیندهای رشد و تمایز رویان تا نگهداری سلول های بالغ درگیر هستند. در میان اعضای این خانواده، BMP-2 پروتئینی با ارزش است که در فرآیندهای مختلف از جمله جوش خوردن ستون فقرات، ترمیم آسیب غضروف مفصلی، مهار تومور، درمان التهاب لثه و دندان نقش دارد. اهمیت بالای این پروتئین و پایین بودن میزان تولید آن در بدن موجب شده است که پژوهش­های متعددی در زمینه تولید BMP-2 نوترکیب در میزبان­های مختلف صورت گیرد. تولید این پروتئین به صورت نوترکیب در میزبان باکتریایی موجب کاهش هزینه­های تولید و در نتیجه استفاده متداول از BMP-2در درمان بیماری­های مختلف شده است. تاکنون تاثیرات مثبت پروتئین کامل BMP-2 و پپتیدهای مشتق از آن با هدف القای تشکیل استخوان در درمان شکستگی و بازسازی استخوان فک برای کاشت دندان قابل ملاحظه بوده است. با توجه به اهمیت بالینی زیاد BMP-2، نیاز به مطالعات بیشتر در رابطه با این پروتئین وجود دارد.

کلیدواژه‌ها

موضوعات


‎[1]‎ S. Cecchi, S. J. Bennet, and M. Arora, “Bone morphogenetic protein-7: Review of signalling and efficacy in ‎fracture healing,” J. Orthop. Transl., vol. 4, pp. 28–34, 2016.‎
‎[2]‎ P. C. Bessa, M. Casal, and R. L. Reis, “Bone morphogenetic proteins in tissue engineering: the road from the ‎laboratory to the clinic, part I (basic concepts),” J. Tissue Eng. Regen. Med., vol. 2, no. 1, pp. 1–13, 2008.‎
‎[3]‎ L. Grgurevic, M. Pecina, and S. Vukicevic, “Marshall R. Urist and the discovery of bone morphogenetic ‎proteins,” Int. Orthop., vol. 41, no. 5, pp. 1065–1069, 2017.‎
‎[4]‎ N. Senn, “On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone.,” Am. J. Med. ‎Sci. 1827-1924, vol. 98, no. 3, p. 219, 1889.‎
‎[5]‎ G. Levander, “On the formation of new bone in bone transplantation,” Acta Chir Scand, vol. 74, pp. 425–426, ‎‎1934.‎
‎[6]‎ M. R. Urist, “Bone: formation by autoinduction,” Science, vol. 150, no. 3698, pp. 893–899, 1965.‎
‎[7]‎ D. L. Griffith, P. C. Keck, T. K. Sampath, D. C. Rueger, and W. D. Carlson, “Three-dimensional structure of ‎recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta ‎superfamily,” Proc. Natl. Acad. Sci., vol. 93, no. 2, pp. 878–883, 1996.‎
‎[8]‎ C. Scheufler, W. Sebald, and M. Hülsmeyer, “Crystal structure of human bone morphogenetic protein-2 at 2.7 ‎‎AA resolution,” J. Mol. Biol., vol. 287, no. 1, pp. 103–115, 1999.‎
‎[9]‎ T. Kirsch, J. Nickel, and W. Sebald, “BMP-2 antagonists emerge from alterations in the low-affinity binding ‎epitope for receptor BMPR-II,” EMBO J., vol. 19, no. 13, pp. 3314–3324, 2000.‎
‎[10]‎ H. Senta et al., “Cell responses to bone morphogenetic proteins and peptides derived from them: Biomedical ‎applications and limitations,” Cytokine Growth Factor Rev., vol. 20, no. 3, pp. 213–222, Jun. 2009, doi: ‎‎10.1016/j.cytogfr.2009.05.006.‎
‎[11]‎ K. Lavery, P. Swain, D. Falb, and M. H. Alaoui-Ismaili, “BMP-2/4 and BMP-6/7 differentially utilize cell ‎surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem ‎cells,” J. Biol. Chem., vol. 283, no. 30, pp. 20948–20958, 2008.‎
‎[12]‎ L. A. Dyer, X. Pi, and C. Patterson, “The role of BMPs in endothelial cell function and dysfunction,” Trends ‎Endocrinol. Metab., vol. 25, no. 9, pp. 472–480, 2014.‎
‎[13]‎ T. D. Mueller and J. Nickel, “Promiscuity and specificity in BMP receptor activation,” FEBS Lett., vol. 586, no. ‎‎14, pp. 1846–1859, 2012.‎
‎[14]‎ P. ten Dijke and H. M. Arthur, “Extracellular control of TGFβ signalling in vascular development and disease,” ‎Nat. Rev. Mol. Cell Biol., vol. 8, no. 11, pp. 857–869, 2007.‎
‎[15]‎ G. A. Helm, T. D. Alden, J. P. Sheehan, and D. Kallmes, “Bone morphogenetic proteins and bone ‎morphogenetic protein gene therapy in neurological surgery: a review,” Neurosurgery, vol. 46, no. 5, pp. 1213–‎‎1222, 2000.‎
‎[16]‎ D. I. Chen, M. Zhao, and G. R. Mundy, “Bone morphogenetic proteins,” Growth Factors, vol. 22, no. 4, pp. ‎‎233–241, 2004.‎
‎[17]‎ O. P. Gautschi, S. P. Frey, and R. Zellweger, “Bone morphogenetic proteins in clinical applications,” ANZ J. ‎Surg., vol. 77, no. 8, pp. 626–631, 2007.‎
‎[18]‎ T. Kobayashi, K. M. Lyons, A. P. McMahon, and H. M. Kronenberg, “BMP signaling stimulates cellular ‎differentiation at multiple steps during cartilage development,” Proc. Natl. Acad. Sci., vol. 102, no. 50, pp. ‎‎18023–18027, 2005.‎
‎[19]‎ Y. Komatsu, V. Kaartinen, and Y. Mishina, “Cell cycle arrest in node cells governs ciliogenesis at the node to ‎break left-right symmetry,” Development, vol. 138, no. 18, pp. 3915–3920, 2011.‎
‎[20]‎ E. Minina, C. Kreschel, M. C. Naski, D. M. Ornitz, and A. Vortkamp, “Interaction of FGF, Ihh/Pthlh, and BMP ‎signaling integrates chondrocyte proliferation and hypertrophic differentiation,” Dev. Cell, vol. 3, no. 3, pp. ‎‎439–449, 2002.‎
‎[21]‎ J. M. Wozney, “The potential role of bone morphogenetic proteins in periodontal reconstruction,” J. ‎Periodontol., vol. 66, no. 6, pp. 506–510, 1995.‎
‎[22]‎ B. Bragdon, O. Moseychuk, S. Saldanha, D. King, J. Julian, and A. Nohe, “Bone morphogenetic proteins: a ‎critical review,” Cell. Signal., vol. 23, no. 4, pp. 609–620, 2011.‎
‎[23]‎ C. K. Chan et al., “Identification and specification of the mouse skeletal stem cell,” Cell, vol. 160, no. 1–2, pp. ‎‎285–298, 2015.‎
‎[24]‎ M. Wu, G. Chen, and Y.-P. Li, “TGF-β and BMP signaling in osteoblast, skeletal development, and bone ‎formation, homeostasis and disease,” Bone Res., vol. 4, no. 1, pp. 1–21, 2016.‎
‎[25]‎ N. Alonso, D. Y. S. Tanikawa, R. da S. Freitas, Lady Canan Jr, T. O. Ozawa, and D. L. Rocha, “Evaluation of ‎maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone ‎morphogenetic protein-2 in cleft lip and palate patients,” Tissue Eng. Part C Methods, vol. 16, no. 5, pp. 1183–‎‎1189, 2010.‎
‎[26]‎ W. Wang et al., “Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres ‎and stimulated by controlled BMP-2 release,” Acta Biomater., vol. 36, pp. 63–72, 2016.‎
‎[27]‎ C. Sayama et al., “Routine use of recombinant human bone morphogenetic protein–2 in posterior fusions of ‎the pediatric spine and incidence of cancer,” J. Neurosurg. Pediatr., vol. 16, no. 1, pp. 4–13, 2015.‎
‎[28]‎ I. Thesleff, “Epithelial-mesenchymal signalling regulating tooth morphogenesis,” J. Cell Sci., vol. 116, no. 9, ‎pp. 1647–1648, 2003.‎
‎[29]‎ S. J. Froum, D. P. Tarnow, S. S. Wallace, Z. Jalbout, S. C. Cho, and M. D. Rohrer, “The use of a mineralized ‎allograft for sinus augmentation: An interim histological case report from a prospective clinical study,” ‎Compendium, vol. 26, no. 4, 2005.‎
‎[30]‎ K. P. Sasikumar, S. Elavarasu, and J. S. Gadagi, “The application of bone morphogenetic proteins to ‎periodontal and peri-implant tissue regeneration: A literature review,” J. Pharm. Bioallied Sci., vol. 4, no. Suppl ‎‎2, p. S427, 2012.‎
‎[31]‎ B. Poon, T. Kha, S. Tran, and C. R. Dass, “Bone morphogenetic protein-2 and bone therapy: successes and ‎pitfalls,” J. Pharm. Pharmacol., vol. 68, no. 2, pp. 139–147, 2016.‎
‎[32]‎ A. Saito, Y. Suzuki, S. Ogata, C. Ohtsuki, and M. Tanihara, “Activation of osteo-progenitor cells by a novel ‎synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope,” Biochim. Biophys. Acta ‎BBA-Proteins Proteomics, vol. 1651, no. 1, pp. 60–67, 2003.‎
‎[33]‎ J.-F. Li et al., “Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2-related peptide ‎combined with rat tail collagen,” Biotechnol. Bioprocess Eng., vol. 15, no. 5, pp. 725–732, 2010.‎
‎[34]‎ S. Tang et al., “Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-‎F127-PTMC11 hydrogels,” Biomed. Mater., vol. 7, no. 1, p. 015008, 2012.‎
‎[35]‎ Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, W. Sufan, and Y. Nishimura, “Alginate hydrogel linked with ‎synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo,” J. Biomed. Mater. Res. Off. ‎J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., vol. 50, no. 3, pp. 405–409, ‎‎2000.‎
‎[36]‎ Q. Yuan et al., “Bioinspired growth of hydroxyapatite nanocrystals on PLGA-(PEG-ASP) n scaffolds modified ‎with oligopeptide derived from BMP-2,” in Key engineering materials, 2007, vol. 334, pp. 1261–1264.‎
‎[37]‎ E. J. Kang, T. G. Eom, and G. O. Choi, “Oligopeptide improving differentiation of osteoblasts,” Oct. 07, 2014‎
‎[38]‎ H. Senta, E. Bergeron, O. Drevelle, H. Park, and N. Faucheux, “Combination of synthetic peptides derived ‎from bone morphogenetic proteins and biomaterials for medical applications,” Can. J. Chem. Eng., vol. 89, no. ‎‎2, pp. 227–239, 2011.‎
‎[39]‎ X. He, X. Yang, and E. Jabbari, “Combined effect of osteopontin and BMP-2 derived peptides grafted to an ‎adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells,” Langmuir, vol. 28, ‎no. 12, pp. 5387–5397, 2012.‎
‎[40]‎ X. Zhang et al., “In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived ‎peptide-coated mineralized collagen composite,” J. Tissue Eng. Regen. Med., vol. 10, no. 2, pp. 99–107, 2016.‎
‎[41]‎ D. D. S. Sleiman Razzouk and R. Sarkis, “BMP-2: biological challenges to its clinical use,” N. Y. State Dent. J., ‎vol. 78, no. 5, p. 37, 2012.‎
‎[42]‎ N. Ghodadra and K. Singh, “Recombinant human bone morphogenetic protein-2 in the treatment of bone ‎fractures,” Biol. Targets Ther., vol. 2, no. 3, p. 345, 2008.‎
‎[43]‎ Y. Harada et al., “Effect of Escherichia coli-produced recombinant human bone morphogenetic protein 2 on ‎the regeneration of canine segmental ulnar defects,” J. Bone Miner. Metab., vol. 30, no. 4, pp. 388–399, 2012.‎
‎[44]‎ J. Park, S. J. Lee, H. Lee, S. A. Park, and J. Y. Lee, “Three dimensional cell printing with sulfated alginate for ‎improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering,” Carbohydr. ‎Polym., vol. 196, pp. 217–224, 2018.‎
‎[45]‎ B. Wildemann, K. Lange, C. Strobel, M. Fassbender, B. Willie, and G. Schmidmaier, “Local BMP-2 application ‎can rescue the delayed osteotomy healing in a rat model,” Injury, vol. 42, no. 8, pp. 746–752, 2011.‎
‎[46]‎ S. Pauly et al., “BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro,” J. Shoulder Elbow Surg., ‎vol. 21, no. 4, pp. 464–473, 2012.‎
‎[47]‎ M. Fujioka-Kobayashi et al., “Cholesteryl group-and acryloyl group-bearing pullulan nanogel to deliver BMP2 ‎and FGF18 for bone tissue engineering,” Biomaterials, vol. 33, no. 30, pp. 7613–7620, 2012.‎
‎[48]‎ Y. H. Lee, B.-W. Lee, Y. C. Jung, B.-I. Yoon, H.-M. Woo, and B.-J. Kang, “Application of alginate microbeads ‎as a carrier of bone morphogenetic protein-2 for bone regeneration,” J. Biomed. Mater. Res. B Appl. Biomater., ‎vol. 107, no. 2, pp. 286–294, 2019.‎
‎[49]‎ S. K. Boda et al., “Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar ‎bone regeneration,” Acta Biomater., vol. 85, pp. 282–293, 2019.‎
‎[50]‎ P. D. Turnpenny and S. Ellard, Emery’s Elements of Medical Genetics E-Book. Elsevier Health Sciences, 2016.‎
‎[51]‎ J.-B. Huh et al., “Effect of rhBMP-2 immobilized anorganic bovine bone matrix on bone regeneration,” Int. J. ‎Mol. Sci., vol. 16, no. 7, pp. 16034–16052, 2015.‎