Bone morphogenetic proteins-2 and its medical applications

Document Type : Analytic Review

Authors

1 Master in Biochemistry, Department of Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran

2 Associate Professor in Faculty of Biological Sciences, Tarbiat Modares University Tehran, Iran

Abstract
Bone morphogenetic proteins (BMPs) are a subfamily of multifunctional superfamily transforming growth factor-beta (TGF-β), thus they have a lot of similarity in biosynthesis, structure, signaling and biological function with other members of the superfamily. They are involved in growth and differentiation of embryo to maintenance of adult cells. Among this family member, BMP-2 is a valuable protein that acts in different processes such as spinal fusions, articular cartilage damage therapy, tumor inhibition, gingivitis and dental treatment. The high importance of this protein and its low production rate in body caused several researches in the field of producing recombinant BMP-2 in different hosts. Recombinant production of the protein in bacterial host caused the decrease in production costs and therefore led to the common use of BMP-2 in treatment of various diseases. To date, positive effects of intact BMP-2 and its derivative peptides, in order to osteoinduction in fracture treatment and jaw bone regeneration for dental implantation, were considerable. Considering high clinical significance of BMP-2, there is a necessity for more investigations in relation to this protein.

Keywords

Subjects


‎[1]‎ S. Cecchi, S. J. Bennet, and M. Arora, “Bone morphogenetic protein-7: Review of signalling and efficacy in ‎fracture healing,” J. Orthop. Transl., vol. 4, pp. 28–34, 2016.‎
‎[2]‎ P. C. Bessa, M. Casal, and R. L. Reis, “Bone morphogenetic proteins in tissue engineering: the road from the ‎laboratory to the clinic, part I (basic concepts),” J. Tissue Eng. Regen. Med., vol. 2, no. 1, pp. 1–13, 2008.‎
‎[3]‎ L. Grgurevic, M. Pecina, and S. Vukicevic, “Marshall R. Urist and the discovery of bone morphogenetic ‎proteins,” Int. Orthop., vol. 41, no. 5, pp. 1065–1069, 2017.‎
‎[4]‎ N. Senn, “On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone.,” Am. J. Med. ‎Sci. 1827-1924, vol. 98, no. 3, p. 219, 1889.‎
‎[5]‎ G. Levander, “On the formation of new bone in bone transplantation,” Acta Chir Scand, vol. 74, pp. 425–426, ‎‎1934.‎
‎[6]‎ M. R. Urist, “Bone: formation by autoinduction,” Science, vol. 150, no. 3698, pp. 893–899, 1965.‎
‎[7]‎ D. L. Griffith, P. C. Keck, T. K. Sampath, D. C. Rueger, and W. D. Carlson, “Three-dimensional structure of ‎recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta ‎superfamily,” Proc. Natl. Acad. Sci., vol. 93, no. 2, pp. 878–883, 1996.‎
‎[8]‎ C. Scheufler, W. Sebald, and M. Hülsmeyer, “Crystal structure of human bone morphogenetic protein-2 at 2.7 ‎‎AA resolution,” J. Mol. Biol., vol. 287, no. 1, pp. 103–115, 1999.‎
‎[9]‎ T. Kirsch, J. Nickel, and W. Sebald, “BMP-2 antagonists emerge from alterations in the low-affinity binding ‎epitope for receptor BMPR-II,” EMBO J., vol. 19, no. 13, pp. 3314–3324, 2000.‎
‎[10]‎ H. Senta et al., “Cell responses to bone morphogenetic proteins and peptides derived from them: Biomedical ‎applications and limitations,” Cytokine Growth Factor Rev., vol. 20, no. 3, pp. 213–222, Jun. 2009, doi: ‎‎10.1016/j.cytogfr.2009.05.006.‎
‎[11]‎ K. Lavery, P. Swain, D. Falb, and M. H. Alaoui-Ismaili, “BMP-2/4 and BMP-6/7 differentially utilize cell ‎surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem ‎cells,” J. Biol. Chem., vol. 283, no. 30, pp. 20948–20958, 2008.‎
‎[12]‎ L. A. Dyer, X. Pi, and C. Patterson, “The role of BMPs in endothelial cell function and dysfunction,” Trends ‎Endocrinol. Metab., vol. 25, no. 9, pp. 472–480, 2014.‎
‎[13]‎ T. D. Mueller and J. Nickel, “Promiscuity and specificity in BMP receptor activation,” FEBS Lett., vol. 586, no. ‎‎14, pp. 1846–1859, 2012.‎
‎[14]‎ P. ten Dijke and H. M. Arthur, “Extracellular control of TGFβ signalling in vascular development and disease,” ‎Nat. Rev. Mol. Cell Biol., vol. 8, no. 11, pp. 857–869, 2007.‎
‎[15]‎ G. A. Helm, T. D. Alden, J. P. Sheehan, and D. Kallmes, “Bone morphogenetic proteins and bone ‎morphogenetic protein gene therapy in neurological surgery: a review,” Neurosurgery, vol. 46, no. 5, pp. 1213–‎‎1222, 2000.‎
‎[16]‎ D. I. Chen, M. Zhao, and G. R. Mundy, “Bone morphogenetic proteins,” Growth Factors, vol. 22, no. 4, pp. ‎‎233–241, 2004.‎
‎[17]‎ O. P. Gautschi, S. P. Frey, and R. Zellweger, “Bone morphogenetic proteins in clinical applications,” ANZ J. ‎Surg., vol. 77, no. 8, pp. 626–631, 2007.‎
‎[18]‎ T. Kobayashi, K. M. Lyons, A. P. McMahon, and H. M. Kronenberg, “BMP signaling stimulates cellular ‎differentiation at multiple steps during cartilage development,” Proc. Natl. Acad. Sci., vol. 102, no. 50, pp. ‎‎18023–18027, 2005.‎
‎[19]‎ Y. Komatsu, V. Kaartinen, and Y. Mishina, “Cell cycle arrest in node cells governs ciliogenesis at the node to ‎break left-right symmetry,” Development, vol. 138, no. 18, pp. 3915–3920, 2011.‎
‎[20]‎ E. Minina, C. Kreschel, M. C. Naski, D. M. Ornitz, and A. Vortkamp, “Interaction of FGF, Ihh/Pthlh, and BMP ‎signaling integrates chondrocyte proliferation and hypertrophic differentiation,” Dev. Cell, vol. 3, no. 3, pp. ‎‎439–449, 2002.‎
‎[21]‎ J. M. Wozney, “The potential role of bone morphogenetic proteins in periodontal reconstruction,” J. ‎Periodontol., vol. 66, no. 6, pp. 506–510, 1995.‎
‎[22]‎ B. Bragdon, O. Moseychuk, S. Saldanha, D. King, J. Julian, and A. Nohe, “Bone morphogenetic proteins: a ‎critical review,” Cell. Signal., vol. 23, no. 4, pp. 609–620, 2011.‎
‎[23]‎ C. K. Chan et al., “Identification and specification of the mouse skeletal stem cell,” Cell, vol. 160, no. 1–2, pp. ‎‎285–298, 2015.‎
‎[24]‎ M. Wu, G. Chen, and Y.-P. Li, “TGF-β and BMP signaling in osteoblast, skeletal development, and bone ‎formation, homeostasis and disease,” Bone Res., vol. 4, no. 1, pp. 1–21, 2016.‎
‎[25]‎ N. Alonso, D. Y. S. Tanikawa, R. da S. Freitas, Lady Canan Jr, T. O. Ozawa, and D. L. Rocha, “Evaluation of ‎maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone ‎morphogenetic protein-2 in cleft lip and palate patients,” Tissue Eng. Part C Methods, vol. 16, no. 5, pp. 1183–‎‎1189, 2010.‎
‎[26]‎ W. Wang et al., “Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres ‎and stimulated by controlled BMP-2 release,” Acta Biomater., vol. 36, pp. 63–72, 2016.‎
‎[27]‎ C. Sayama et al., “Routine use of recombinant human bone morphogenetic protein–2 in posterior fusions of ‎the pediatric spine and incidence of cancer,” J. Neurosurg. Pediatr., vol. 16, no. 1, pp. 4–13, 2015.‎
‎[28]‎ I. Thesleff, “Epithelial-mesenchymal signalling regulating tooth morphogenesis,” J. Cell Sci., vol. 116, no. 9, ‎pp. 1647–1648, 2003.‎
‎[29]‎ S. J. Froum, D. P. Tarnow, S. S. Wallace, Z. Jalbout, S. C. Cho, and M. D. Rohrer, “The use of a mineralized ‎allograft for sinus augmentation: An interim histological case report from a prospective clinical study,” ‎Compendium, vol. 26, no. 4, 2005.‎
‎[30]‎ K. P. Sasikumar, S. Elavarasu, and J. S. Gadagi, “The application of bone morphogenetic proteins to ‎periodontal and peri-implant tissue regeneration: A literature review,” J. Pharm. Bioallied Sci., vol. 4, no. Suppl ‎‎2, p. S427, 2012.‎
‎[31]‎ B. Poon, T. Kha, S. Tran, and C. R. Dass, “Bone morphogenetic protein-2 and bone therapy: successes and ‎pitfalls,” J. Pharm. Pharmacol., vol. 68, no. 2, pp. 139–147, 2016.‎
‎[32]‎ A. Saito, Y. Suzuki, S. Ogata, C. Ohtsuki, and M. Tanihara, “Activation of osteo-progenitor cells by a novel ‎synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope,” Biochim. Biophys. Acta ‎BBA-Proteins Proteomics, vol. 1651, no. 1, pp. 60–67, 2003.‎
‎[33]‎ J.-F. Li et al., “Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2-related peptide ‎combined with rat tail collagen,” Biotechnol. Bioprocess Eng., vol. 15, no. 5, pp. 725–732, 2010.‎
‎[34]‎ S. Tang et al., “Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-‎F127-PTMC11 hydrogels,” Biomed. Mater., vol. 7, no. 1, p. 015008, 2012.‎
‎[35]‎ Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, W. Sufan, and Y. Nishimura, “Alginate hydrogel linked with ‎synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo,” J. Biomed. Mater. Res. Off. ‎J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., vol. 50, no. 3, pp. 405–409, ‎‎2000.‎
‎[36]‎ Q. Yuan et al., “Bioinspired growth of hydroxyapatite nanocrystals on PLGA-(PEG-ASP) n scaffolds modified ‎with oligopeptide derived from BMP-2,” in Key engineering materials, 2007, vol. 334, pp. 1261–1264.‎
‎[37]‎ E. J. Kang, T. G. Eom, and G. O. Choi, “Oligopeptide improving differentiation of osteoblasts,” Oct. 07, 2014‎
‎[38]‎ H. Senta, E. Bergeron, O. Drevelle, H. Park, and N. Faucheux, “Combination of synthetic peptides derived ‎from bone morphogenetic proteins and biomaterials for medical applications,” Can. J. Chem. Eng., vol. 89, no. ‎‎2, pp. 227–239, 2011.‎
‎[39]‎ X. He, X. Yang, and E. Jabbari, “Combined effect of osteopontin and BMP-2 derived peptides grafted to an ‎adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells,” Langmuir, vol. 28, ‎no. 12, pp. 5387–5397, 2012.‎
‎[40]‎ X. Zhang et al., “In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived ‎peptide-coated mineralized collagen composite,” J. Tissue Eng. Regen. Med., vol. 10, no. 2, pp. 99–107, 2016.‎
‎[41]‎ D. D. S. Sleiman Razzouk and R. Sarkis, “BMP-2: biological challenges to its clinical use,” N. Y. State Dent. J., ‎vol. 78, no. 5, p. 37, 2012.‎
‎[42]‎ N. Ghodadra and K. Singh, “Recombinant human bone morphogenetic protein-2 in the treatment of bone ‎fractures,” Biol. Targets Ther., vol. 2, no. 3, p. 345, 2008.‎
‎[43]‎ Y. Harada et al., “Effect of Escherichia coli-produced recombinant human bone morphogenetic protein 2 on ‎the regeneration of canine segmental ulnar defects,” J. Bone Miner. Metab., vol. 30, no. 4, pp. 388–399, 2012.‎
‎[44]‎ J. Park, S. J. Lee, H. Lee, S. A. Park, and J. Y. Lee, “Three dimensional cell printing with sulfated alginate for ‎improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering,” Carbohydr. ‎Polym., vol. 196, pp. 217–224, 2018.‎
‎[45]‎ B. Wildemann, K. Lange, C. Strobel, M. Fassbender, B. Willie, and G. Schmidmaier, “Local BMP-2 application ‎can rescue the delayed osteotomy healing in a rat model,” Injury, vol. 42, no. 8, pp. 746–752, 2011.‎
‎[46]‎ S. Pauly et al., “BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro,” J. Shoulder Elbow Surg., ‎vol. 21, no. 4, pp. 464–473, 2012.‎
‎[47]‎ M. Fujioka-Kobayashi et al., “Cholesteryl group-and acryloyl group-bearing pullulan nanogel to deliver BMP2 ‎and FGF18 for bone tissue engineering,” Biomaterials, vol. 33, no. 30, pp. 7613–7620, 2012.‎
‎[48]‎ Y. H. Lee, B.-W. Lee, Y. C. Jung, B.-I. Yoon, H.-M. Woo, and B.-J. Kang, “Application of alginate microbeads ‎as a carrier of bone morphogenetic protein-2 for bone regeneration,” J. Biomed. Mater. Res. B Appl. Biomater., ‎vol. 107, no. 2, pp. 286–294, 2019.‎
‎[49]‎ S. K. Boda et al., “Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar ‎bone regeneration,” Acta Biomater., vol. 85, pp. 282–293, 2019.‎
‎[50]‎ P. D. Turnpenny and S. Ellard, Emery’s Elements of Medical Genetics E-Book. Elsevier Health Sciences, 2016.‎
‎[51]‎ J.-B. Huh et al., “Effect of rhBMP-2 immobilized anorganic bovine bone matrix on bone regeneration,” Int. J. ‎Mol. Sci., vol. 16, no. 7, pp. 16034–16052, 2015.‎