[1] B. Hu, “Characteristics of SARS-CoV-2 and COVID-19,” Nat. Rev. Microbiol., no. December, 2019, doi: 10.1038/s41579-020-00459-7.
[2] T. Wang et al., “Comorbidities and multi-organ injuries in the treatment of COVID-19,” Lancet, vol. 395, no. 10228, p. e52, 2020, doi: 10.1016/S0140-6736(20)30558-4.
[3] C. Menni et al., “Real-time tracking of self-reported symptoms to predict potential COVID-19,” Nat. Med., vol. 26, no. July, 2020, doi: 10.1038/s41591-020-0916-2.
[4] B. Udugama et al., “Diagnosing COVID-19 : The Disease and Tools for Detection,” ACS Nano, vol. 14, pp. 3822–3855, 2020, doi: 10.1021/acsnano.0c02624.
[5] N. Ravi, D. L. Cortade, E. Ng, and S. X. Wang, “Diagnostics for SARS-CoV-2 detection : A comprehensive review of the FDA-EUA COVID-19 testing landscape,” Biosens. Bioelectron., vol. 165, no. April, p. 112454, 2020, doi: 10.1016/j.bios.2020.112454.
[6] Z. Qin, R. Peng, I. K. Baravik, and X. Liu, “Fighting COVID-19 : Integrated Micro- and Nanosystems for Viral Infection Diagnostics,” Matter, vol. 3, no. 3, pp. 628–651, 2020, doi: 10.1016/j.matt.2020.06.015.
[7] B. Giri, S. Pandey, R. Shrestha, K. Pokharel, F. S. Ligler, and B. B. Neupane, “Review of analytical performance of COVID-19 detection methods,” Anal. Bioanal. Chem., vol. 413, pp. 35–48, 2021.
[8] “Coronavirus Disease 2019 (COVID-19) Emergency Use Authorizations for Medical Devices.” https://www.fda.gov/medical-devices/emergency-use-authorizations-medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices.
[9] “COVID-19 Diagnostics & testing,” [Online]. Available: https://www.finddx.org/covid-19/.
[10] “RADx Programs,” [Online]. Available: https://www.nih.gov/research-training/medical-research-initiatives/radx/radx-programs.
[11] C. This et al., “Assay Techniques and Test Development for COVID-19 Diagnosis,” ACS Cent. Sci., 2020, doi: 10.1021/acscentsci.0c00501.
[12] I. K. Rai, Praveen,Ballamoole Krishna Kumar, Vijaya Kumar Deekshit, Indrani Karunasagar, “Detection technologies and recent developments in the diagnosis of COVID-19 infection,” Appl. Microbiol. Biotechnol., 2021, doi: 10.1007/s00253-020-11061-5.
[13] W. Feng et al., “Molecular Diagnosis of COVID-19: Challenges and Research Needs,” Anal. Chem., 2020, doi: 10.1021/acs.analchem.0c02060.
[14] Zhu, Hanliang, H. Zhang, S. Ni, M. Korabečná, L. Yobas, and P. Neuzil, “The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond,” Trends Anal. Chem., vol. 130, pp. 1–13, 2020, doi: 10.1016/j.trac.2020.115984.
[15] M. Allam, S. Cai, S. Ganesh, M. Venkatesan, C.-S. Group, and A. F. Coskun, “COVID-19 Diagnostics, Tools, and Prevention,” Diagnostics, vol. 10, no. 6, pp. 1–33, 2020, doi: 10.3390/diagnostics10060409.
[16] B. H. Foy, J. C. T. Carlson, E. Reinertsen, R. P. I. Valls, R. P. Lopez, and E. Palanques-tost, “Association of Red Blood Cell Distribution Width With Mortality Risk in Hospitalized Adults With SARS-CoV-2 Infection,” JAMA Netw. Open, vol. 3, no. 9, pp. 1–13, 2020, doi: 10.1001/jamanetworkopen.2020.22058.
[17] L. Xu, D. Li, S. Ramadan, Y. Li, and N. Klein, “Biosensors and Bioelectronics Facile biosensors for rapid detection of COVID-19,” Biosens. Bioelectron., vol. 170, no. August, p. 112673, 2020, doi: 10.1016/j.bios.2020.112673.
[18] “Instrument-free PCR,” [Online]. Available: https://www.visbymedical.com/covid-19-test/.
[19] L. Zhou et al., “Programmable low-cost DNA-based platform for viral RNA detection,” Sci. Adv. |, no. September, pp. 1–10, 2020.
[20] M. F. Wolthuis, J. C. T. Eijkel, and L. I. Segerink, “Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities,” Biosens. Bioelectron., p. 112445, 2020, doi: 10.1016/j.bios.2020.112445.
[21] “A CRISPR-based detection solution for SARS-CoV-2,” [Online]. Available: https://mammoth.bio/covid/.
[22] Q. Chen, Z. He, F. Mao, H. Pei, H. Cao, and X. Liu, “Diagnostic technologies for COVID-19 : a review,” RSC Adv., vol. 10, p. 35257, 2020, doi: 10.1039/d0ra06445a.
[23] “Covid Antibody and Antigen Test Kits.” https://hardydiagnostics.com/coronavirus-covid-19-update/.
[24] P. Pokhrel, C. Hu, and H. Mao, “Detecting the Coronavirus ( COVID-19 ),” ACS Sensors, vol. 5, no. 8, pp. 2283–2296, 2020, doi: 10.1021/acssensors.0c01153.
[25] P. R. W. Peeling, P. P. L. Olliaro, D. I. Boeras, and N. Fongwen, “Personal View Scaling up COVID-19 rapid antigen tests : promises and challenges,” Lancet Infect. Dis., vol. 3099, no. 21, pp. 21–26, 2021, doi: 10.1016/S1473-3099(21)00048-7.
[26] “Clip COVID Rapid Antigen Test,” [Online]. Available: https://cliphealth.com/.
[27] “Access IL-6 Assay.” https://www.beckmancoulter.com/products/immunoassay/access-il-6-assay.
[28] “Elecsys® IL-6 Early marker in acute inflammation.” https://diagnostics.roche.com/global/en/products/params/elecsys-il-6.html.
[29] R. Weissleder, H. Lee, J. Ko, and M. J. Pittet, “COVID-19 diagnostics in context,” Sci. Transl. Med. |, vol. 2019, pp. 1–7, 2020.
[30] V. Bhavana, P. Thakor, S. B. Singh, and N. K. Mehra, “COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic,” Life Sci., p. 118336, 2020, doi: 10.1016/j.lfs.2020.118336.
[31] V. Haldane et al., “Health systems resilience in managing the COVID-19 pandemic: lessons from 28 countries,” Nat. Med., pp. 1–7, 2021, doi: 10.1038/s41591-021-01381-y.
[32] L. Falzone, G. Gattuso, A. Tsatsakis, D. A. Spandidos, and M. Libra, “Current and innovative methods for the diagnosis of COVID ‑ 19 infection ( Review ),” Int. J. Mol. Med., vol. 47, pp. 1–23, 2021, doi: 10.3892/ijmm.2021.4933.
[33] J. D. Whitman et al., “Evaluation of SARS-CoV-2 serology assays reveals a range of test performance,” Nat. Biotechnol., vol. 38, no. October, pp. 1174–1183, 2020, doi: 10.1038/s41587-020-0659-0.